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AbsttYKt tubes vanishes. One can therefore treat more general struc- 

We describe a generalized method to compute wake po- tures by passing underneath the lowest radius material without 

tcntials created in axisymmetric structures. It relies on ex- having to introduce long beam tubes. The detailed derivation 

pressing the wake potentials, of any multipole order, as inte- of this method is given in [2]. Its only limitation is, for m 2 

grals over the e.m. fields along an arbitrary one-dimensional 1, that the two beam tubes have equal radii. 

contour spanning the structure longitudinally. For perfectly This method has been implemented in the computer code 
conducting structures, the integration along the axis can then ABC1 [3] where the integration path is made of straight line 
bc replaced by choosing a contour beginning and ending on segments defined by the 3 parameters ZCF, ZCT ans RWAK 
the beam tubes. Thus it gencralizcs the former method of cal- as shown in Figure 1. Results from this code are presented. 
culating the wake potentials by integrating along a straight line 
at the beam tube radius. Its usefulness is illustrated with the 
computer code ABC1 which permits calculation of wake po- 
tentials in structures extending to the inside of the beam tube 
radius, or having unequal beam tube radii at the two sides. 

I. INTRODUCTION 
The determination of the wake potentials and impedances 

created by metallic structures surrounding the beam trajectory 
is an important issue in the design of accelerators. In most 
practical casts, the wake fields must be calculated with com- 
putcr codes. For cavity-like structures symmetric about the 
beam axis, using the known radial dcpcndcnce of the monopo- 
lar (m=(1) longitudinal and dipolar (m=l) transverse potentials, 
the integration of the wake fields can be performed along a 
straight line parallel to the axis at the beam tube radius [I]. 
For perfectly conducting walls, the boundary conditions en- 
sure that the integral along the beam tube vanishes for the 
tangential (longitudinal or azimuthal) components of the wake 
potential. This leaves the integral across the cavity gap as the 
only contribution to the wake potentials. This simplification is 
csscntial for computer calculations, in particular for long struc- 
tures and short bunches requiring small mesh size and where 
long beam tubes would require excessive computer memory 
and cpu time. However, this technique dots not work when 
the two beam tubes have unequal radii, or when part of the cav- 
ity extends to a smaller radius. If it is the case, for instance for 
tapers, steps. collimators or cavities with small aperture irises. 
the only alternative is to integrate nlorlg a straight line at an 
allowable radius, and with beam tubes as long as possible. 
LJsually OJK must also subtract the wake potential of the beam 
tubes without structure (“numerical noise”) which is different 
from zero due to the discrctization of the geometry. 

In this paper, we generalize the above straight-line inte- 
gration method, by showing that the longitudinal and trans- 
verse wake potentials, at all orders m in the multipolar ex- 
pansion, are given by a wakefield integral along any arbitrary 
contour, like (C) in Figure 1, starting and ending on the beam 
tubes. This integral is such that the contribution of the beam 
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Figure 1 Contours and contour pxuneters in program ABC1 

II. CALCULATION OF 
THE WAKE POTENTIALS 

The longitudinal and transverse wake potentials are de- 
lined by 

+rU 
Mi,(r,f?,s) = -6 

s 
dz E, (7-> n,z, 2(z, s)) (1) 

and 

+ZJ 
Wl(I-,O,S) = $ .I dt(El+vxB)(~,n,~,L(z:s)) (2) 

where s is the distance behind the exciting charge Q of velocity 
V=C. 

t(z,s) = (2 + s)/c (3) 

It is convenient to decompose the electromagnetic fields as 
E=E(‘)+E(‘) and B=B(‘)+B(“) where (E(O), B(O)) are the 
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fields generated by Q in free space, and (Et’), B(‘)) are the 
fields radiated by the structure and contributing to the wake 
potentials W, and WI. Assuming 0 = 0 for the exciting 
charge, these fields obey the following Fourier expansion 

(~%,&,&)(r,e,t,t) = 2 (er,be,e,)(m)(r,z,t)cos(me) 
m=O 

(&,&,&)(r,e,r,t) = 2 (br,ee,b,)(m)(r,Z.,t)sin(me) 

m=l 
(4) 

Defining the 2d-vectors Stm) and Dcrn) in the (r,zj-plane, as 

( 

rm eP)+cbj’) - ef)+cb!‘)] 
6) 

s(m) = [ 

rm eg)+cbp) 
1 1 

(ml 

I 

(5) 

one can show, using the homogeneous Maxwell’s equations 
satisfied by the fields (E@), B(‘)) , that the one-forms defined 
by these vectors are closed in the (r,z)-plane, i.e. 

&S~m)(r,z,s,t(r, s)) - &S!m)(r, 2, s,t(z, s)) = 0 

8,D!m.)(r,z,~,t(d,~))- &D~m)(r,~,~,t(t,s)) = 0 
(7) 

This implies that the vectors S(“‘) and Dtm) derive from a po- 
tential and that their integral along a closed contour (enclosing 
the vacuum) vanishes. This property allows one to deform the 
wakefield integration path from the straight line (Lr) at constant 
radius r used in definitions (1) and (2), to any contour (CT). 

A. The m-0 case 

In this case the radiated fields (EC’) , B(‘) vanish at both 
ends of the beam tube, and the integrals of SC0 1 along (Z,,) and 
along the path (C), are equal: 

J S(O)(r, z, s) . 61 = 
J 

SCo)(r’, t, s) . dl (8) 
L, c 

The right-hand side of this equation is proportional to the 
longitudinal potential W$‘)(s), which is therefore given by 

j/$o)(s) = -L * Q J [E,dz + (E,+cBe)dr](m=o)(r,*,t(z,s)) 

C 

(9) 
where the log term comes from the integration of the free fields 
E!O) + cl?(O) e ’ and a;,, and ao,,, are the tube radii. 

B. The m>O case 

In that case we assume that Qi, = aout = a, as will be 
justified later. Then 

J Scm)(r, z, s) . dl = J !dm)(r’, z, s) . d (10) 
L, c 

J Dcm)(r, z, s) . dl = J D(“)(r’, z, s) .dl (11) 
L, c 

since the radial integrals at z = foe cancel each other. The 
first equation, evaluated on the z-axis, implies that the integral 
of S(m) along any contour vanishes. It is then easy to show 
that 

cos (7d) wim)(r,e,s) = - 2Q rmJ~(m) .d (12) 
C 

Adding to the integral of Dcrn) the (vanishing) integral of 
S(m) along (C) divided by 2”‘. leads to an expression of 
the longitudinal wake potential where the integral along the 
beam tubes vanishes due to the metallic boundary conditions. 
This is however only possible when the tube radii are equal. 
Evaluating the resulting expression in terms of the e.m. fields 
in the structure, leads to 

Wim)(r, 8, S) = rm ‘OS Cme) w(m)‘(s) 

2Qam (13) 

with 

w(m)‘(s) = - Jdz[ ($ + 

+dr’[ ($ +k) 

$)ez - ($ - $)cb,] 

The transverse potential can be written, using the Panofsky: 
Wenzel theorem, as 

WL(r,B,s) =g ~(cos(rne)f -sin(mO)&)7Jm)(s) 
m=l 2Qam 

(15) 
with 

W’“‘(S) = ~Jt’df[(~-$)e,-(~+~)cb,] 

+~dz[($:f)(ee+cbr)-($-$)(e,-cb;))6) 

In equations (14) and (16), it is understood that the elecko: 
magnetic fields are projected on their multipolar component of 
order m, and that their argument is (r', z, t(z, s)). 

3448 

PAC 1993



III. COMPUTER IMPLEMENTATION 
The possibility of integrating along a non-straight path, 

using Equations (9) (14) and (16) has been implemented 
in the time-domain program ABC1 131 as discussed in the 
introduction. We illustrate the interest of this method with 
the calculation of wake potentials for two cases. We first 
consider a 1 cm long collimator of 4 mm radius in a beam 
tube of 1 cm radius. Figure 2 shows a comparison of the loss 
factor of a Gaussian bunch with uZ = 5mm calculated with 
two different methods: 
1. the wakefield integration along a straight line at 4 mm 

constant radius (solid line). The calculated wake potential 
and loss factor then depend on the length L of the tube 
on both sides of the collimator. The result is given, after 
substraction of the wake of the tube alone (“numerical 
noise correction” similar ot the WAKCOR method in 
TBCI [S]), by the asymptotic value. 

2. the w,akeheld integration along the boundary of the col- 
limator, using Equation (9). In this cast the result is 
independent of the length of the tube and gives directly 
the value of the loss factor (dotted line). 

Finally Figure 4 plots the m=l wake potentials of a 20 
cell 30 GHz constant gradient structure, as shown in Figure 
3, where the inner and outer radii of each cell are different. 
The contour of integration chosen by the program is given by 
the dashed line. 
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Figure 4 Dipolar wake potential (m=l) 
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Figure 2 Longitudincll loss factor [V/PC] of ;I 
collitnator 3s a function of the bealn tube length 
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Figure 3 Constant gradient structure for CLIC 

IV. CONCLUSION 
In practical calculations of the wake potentials created 

by axisymmetric cavities, one usually evaluates them by in- 
tegrating along the cavity gap at the beam tube radius. We 
have generalized this method by showing that the wake po- 
tentials, of any multipole order, are given by integrals over 
the wake fields along any arbitrary contour spanning the struc- 
ture longitudinally. By so doing we have extended the range 
of applications to structures of more complicated shape. The 
integration of wake fields along well chosen contour permits 
a large savings in computer capacity. In particular, the inte- 
gration along a structure extending to the inside of the beam 
tubes - such as a collimator or iris - has become much easier 
with this method. Also the m=O wake potential of structures 
with unequal beam tubes can be calculated in this manner. 
The new method of integration has been implemented in the 
code ABC1 (versions 5 or higher) which can choose the proper 
contour automatically or as selected by the user. 
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