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Abstract 
A method for calculating the impedance and the wake 

function of resistive beam pipes is given. It allows an ar- 
bitrary shape of the crosssection, and arbitrary location of 
the source and witness particles, including the short-range 
betavior of the wake function. The pipe is uniform longitu- 
dinally and the beam is assumed to be ultra-relativistic. A 
simple computer code has been written using the boundary 
element method. Some results for elliptical, rectangular 
and hyperbolic pipes are presented. 

I. METHOD OF COMPUTATION 

The resistive wall impedance has been a topic in acceler- 
ator physics since 1960’s and is thought to be well known 
but, in fact ( it calls for further investigation still now as the 
recent papers show [1,2,3,4,5]. The aim of the present pa- 
per is to give a method of computing the impedance/wake 
function for arbitrary shape of the beam pipe, arbitrary lo- 
cation of the particles including the short range behavior 
of the wake. The detail of our method is described in [S]. 
A. Assumptions and notation 

We assume a longitudinally uniform pipe and an ultra- 
relativistic beam. The z-axis is parallel to the pipe. In the 
(2,~) plane, t,he vacuum region surrounded by the wall is 
denoted by Q. The coordinate s is the 1engt.h measured 
along the wall surface aR. The unit normal (outward from 
0) and tangential vectors at s are denoted by n(s) and 
r(s), respectively, and the unit vector along z by e,. The 
source and the witness charge (unit charge) are located at 
rs = (;cs,y5) and t, = (zcw , y,,,), respectively. All the field 
quantities are proportional to exp i(kz -it) (k = w/c) 
because of the longitudinal uniformity. 

We write the electric and magnetic fields as E+ E(O) and 
.&7 + 61(O), where the superscript (0) denotes solutions for 
the perfectly conducting wall with the same wall shape. 
Since the transverse Lorentz force FL = El + Zoe, x H 
satisfies FL = -i/kVlE,, all the needed information is 
obtained from E,. 
B. Kirchhoff integral formula 

Since (E,B) obeys the sourceless Maxwell equation, it 
satisfies the Kirchhoff integral formula, which, when the 
field is proportional to eik(z-ct), can be written as 

Ez(f) = .d ds’ [ik(E, - ZoH,)G - E, n’ VlG] , (1) 

El(t)= ds’[ik(r’ZoH,-n’E,)GE,VlG-E,e,xVlG], 
f 

(2) 
Here, f is the integral along ast a.nd the prime refers to 
the quantities evaluated on the wall at s’. The function 

G = G( t, r’) is the Green function satisfying the Laplace 
equation AlG( r, r') = -5( r - r’). The simplest choice is 
G(r, r’) = -(1/2x)logIr - r’l. 

The limit that r -+ aR gives integral equations where 
only the fields on the wall appear. For numerical calcu- 
lation, we divide the wall surface dQ into short segments 
and express the field as column vectors 1 ). Then, the in- 
tegrals appearing in eqs.( 1) and (2) can be represented by 
matrices. Thus, we obtain matrix equation 

V IE,) = -ikg ]ZoH, - E,) , (3) 

N IE,,) - 7 I&) = -ik [C IEZ) + S IZOH,)] , (4) 

7 I&) + N I&) = -ik [S [EL) - C lZ,H,)] (5) 

C. Approximate boundary condition 
When the skin depth is much smaller than the typical 

transverse scale L of the pipe, the boundary condition is: 

Zo(H, + fp’) = -ZE,, 
k 

ZoH, = :E,. (on aa) (6) 

n E eait4 &JG = (1 + i)/hshin = erri14 m, (7) 

bakin = &ii=, PO = l/l.loca (8) 
where ~0 is the permeability of vacuum and u the con- 

ductivity of the wall material. (po x 0.5 x IO-“m for 
copper at room temparature.) 
D. Solution of the integral equation 

The E, terms on the 1.h.s. of (4) and (5) can be ignored 
when &Skin < L. Then, eqs.(4) and (5) can formally be 
solved as 

IE,J = -ikM IEZ) , (9) 

where A4 is a matrix defined by 

M = (A’+ SC-17)-‘(C + SC-‘S). (10) 

Using eq.(9) and the boundary condition (G), we can solve 
eq.(3), under the same condition 6sk.n << L, as 

IEz) = f [I - iGM]-’ IZoH$‘)). (11) 

The solution ZoH$‘) for the perfectly conducting case, ap- 
pearing on r.h.s. of this equation, can be found using the 
matrices G and 2, defined in (3) as 

ss(r) = G(r! rs) 

(12) 
E. The field at the witness particle 

To find E, at the witness particle, we go back to the 
Kirchhoff formula (l), which can formally be written as 

EZ(rW) = -ik (s~IZOH, - En) - (sblE2), (13) 
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where gru and gl, are functions on LKl defined by 

g,,](s) = G(t,, r) and gh = dg,/dn = n.VIG(r,,, t) 

The brakets ( 1 ) d enote the integral over the circumference 
of the cross section: (u]w) z $ds~*(s) u(s). Using eq.(3), 
we can rewrite eq.(13) as Ez(rU)) = (VIE,) where (~1 E 

hIwIG-“D - (!Ll. 
Thus, finally we find E, at the witness particle 

E,(r,)=Zn~(o,[I-~~M]-‘,u). (14) 

F. Eigenvalues and eigenfunctions of the matrix M 
We denote the eigenvalue (always real) of M by p-la and 

the eigenfunction by ]a), which is normalized as (o]o) = 1. 
Then, eq.(14) can be written as 

E,(t,) = &;x ‘a 
a 1 - i(kz/K)&’ 

(15) 

I. The AC Conductivity at High Frequencies 
As pointed out by Bane 131, the AC conductivity is no 

longer equal to the DC conductivity at very high frequen- 
cies and is approximately expressed by u/( l- iwr), r being 
the relaxation time of the metal. Our formulas in the fre- 
quency domain are still valid in such a case. The wake 
function, however, cannot be expressed by the t’wo func- 
tions f~(c) and f~(<). 

with ca( r,, rs) = (t~]o) (alu). The transverse force is then 
given by 

FL(r,) = -iz C ‘yldrw 
a 1 - 2(k2/fc)pa ’ 

&-- 60 
-5 
P 

(16) n 
0 40 
e 

II. APPLICATIONS 

Results of the application to various pipes are given 
in [6], such as the transient behavior of the wake, influence 
of the AC conductivity, dependence on the source/witness 
particle location for round, elliptic, rectangular, and hyper- 
bolic pipes. Here, we shall show some of them and some 
more structures. 

I I”“I”“I”“I”“l”“1 

where the coefficients dc,/llr, can be calculated simply 
by using ag,/at, instead of gtu. From eqs.(l5) and (16). 
we can calculate any physical quantities like the wake func- 
tion, loss parameters, wall heating etc. Note that M de- 
pends only on the wall shape but is independent of the 
particle location, the frequency, and the conductivity. 
G. Asymptotic form for k < (L2pc)-1/3 

In the asymptotic region k << (L2po)-1/3, pa in eqs.(l5) 
and (16) can be ignored. Since c, ]cr) (CX] is identity, we 

get 

E+-,,,,)+f dsv*(s)u(s), (k<<(~~~o)-“~). 

(17) 
When r, = r,, we have u = v and, consequently, the inte- 
grand becomes ]u(s)12, g’ ’ g ivm rise to a formula identical to 
the longitudinal impedance formula obtained in [5]. Sim- 
ilar formulas can be found for the transverse impedance. 
Thus, if one is interested only in the asymptotic form, the 
operator M is not needed. 
H. Wake function 

Since all the terms in eqs.(l5) and (16) have the same 
wave number dependence, the wake function can easily be 
computed from two basic functions f~ and f~ 

~VL(Z) = &- f$nf~(+n,r z, = [(2~a)~po]i’~ (18) 

(19) 

(See [6] for the explicit form of fr, and f~.) The asymp- 
totic forms for large z >> (L2pc)li3 are found to be 

c‘%Jpo 
WL x ~ CCU’ 

2X&P a 
WI = %&-$. (20) 
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Figure 1: Transverse wake function (solid line) for a hyperbolic 
pipe with b=lcm. The dotted line is the asymptotic form and the 
dashed line is for the round pipe with radius Icm. 

Fig. 1 shows the transverse wake function for a hyper- 
bolic pipe having a shape like the pole of a quadrupole 
magnet. The radius at the pole tip is b =lcm. (The area 
is cut at 2cm but the result is almost independent of the 
cut if it is larger than 1.5cm.) The horizontal axis is the 
normalized distance C = z/.z~ with zs = (b2pc)‘/3 (=I 17pm 
for copper). The solid line is aW,/ay, for the hyperbolic 
pipe. The dotted line is the asymptotic form (m l/,,&). 
For comparison, the wake for the round pipe with radius 
lcm is plotted in the dashed line One finds the wake for 
the hyperbolic pipe is condiderably smaller than that for 
the round pipe in the short-range region but the difference 
is only slight in the asymptotic region (factor 0.835). 

Next, let us discuss the dependence of the transverse 
asymptotic wake on the location of the witness particle rw 
with rs = 0. The transverse wake is absent in the case of 
round pipes but this is not true in general. 

The vertical asymptotic wake is plotted in Fig. 2 as a 
function of yw for rectangular and elliptic pipes. The as- 
pect ratio is indicated by the line modes as shown in the 
figure with crosses for the curves for rectangular pipes. The 
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Figure 2: Vertical asymptotic wake vs. the location of the 
witness particle for rectangular and elliptic pipes of various aspect 
ratio with fixed vertical aperture. 

vertical half aperture b is fixed in all cases. The wake vii, 

is normalized by I%$‘) = b[dW,/dy,],,,,d p,pe,t.=O, which 
is the dipole wake for a round pipe when the source par- 
ticle is near the pipe wall. From this figure we find the 
following facts. Firstly, IV, increases as yu, in rectangu- 
lar pipes more rapidly than in elliptic pipes. Even for the 
square pipe a/b=l.O, IV, is almost the same as that for 
a/b = CQ, when the witness particle is close to the wall. 
Secondly, the yw dependence is almost linear for elliptic 
pipes if a/b d 1.5 but lVy is still large near the wall unless 
a/b is very close to unity. For example, when a/b=1.2, CV, 
is about one quarter of the dipole wake of a round pipe 
with yJ = 0. 

These facts strongly suggest that t,he collimator for lin- 
ear colliders has to be round. 
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Figure 3: Transvewz asymptotic wake for a hyperbolic pipe 
for rw on the y-axis (W,) and on the 45-degree line (Wr). The 
distance from the center to the pole is b. 

Fig. 3 is a similar plot for hyperbolic pipe. Plotted is 
the transverse asymptotic wake for t, = 0 with the witness 
particle along the y-axis ( FVy) and that along the 45-degree 

line (Wr). They are normalized by the same I+‘,$‘) as in the 
previous plot. IV, becomes large near the pole face. 

As we have seen in Fig. 1, the asymptotic wake for a 
hyperbolic pipe is nearly the same as that in a round pipe 
tangent at the pole face. This means that the wall current 
is concentrated on a part of the wall close to the beam. 
We have computed the asymptotic wake for a flat-face 
scraper with finite horizontal width 2a and the gap height 
26. The result is shown in Fig. 4. Both the source and 
witness particle are at the center. The longitudinal wake 
WL (long-dash) and four transverse wakes, dW,/dl, (dot- 
dash), aIV,/ay, (dash), aIV,/ay, (dot), and aw,/ay, + 
c3Wy/i3y, (solid) are plotted against the width a. WL is 
normalized by @‘L of a round pipe of radius b, and the 
transverse wakes are normalized by %V,/ay, for the round 
pipe. The limit a - cc corresponds to the two parallel 
pipes. One finds that the wake is rather insensitive to the 
scraper width a and is even large when a is small. 
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Figure 4: Asymptotic wake for finite width parallel collimator 
for r w = rS = 0. (width 2a, gap height 2b) Normalized by the 
corresponding wake for a round pipe with radius b. 
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