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It is known that the electromagnetic field caused by 
a moving charge depends on its acceleration. Therefore, 
if a bunch of charged particles has a circular trajectory, 
the self fields in the bunch depend on the radius of cur- 
vature. We will treat these self fields analytically for a 
one-dimensional bunch, using the LiCnard-Wiechert po- 
tentials. These depend on the retarded positions of the 
charges in the bunch. We will show that one only has to 
determine these positions explicitely for the endpoints of 
the bunch. The one-dimensional model predicts non-zero 
tangential and radial forces in the middle of the bunch 
which depend on its angular width and on its angular ve- 
locity. Expressions for these forces are presented. A com- 
parison between the power loss due to coherent radiation 
and the tangential force exerted on the central electron of 
the bunch shows that there is a definite relation between 
these quantities. 

I. INTRODUCTION 

We consider a charge Q in an arbitrary o_rbit. At time 
1’, the charge is located at F’, has velocity /3 and acceler- 

L. 
ation 0. The electromagnetic field caused by this charge, 
experienced at time t > t’ and position ?‘I can be derived 
from the LiCnard-Wiechert potentials [‘2] and reads 

E(?g) = -2- 
[ 

Ii-p 

47~~ -p(l-p’. q3~2 

+ n’ x {(Z - 8) x /+} 

c( 1 - p. 7y.A 1 
Z(r;, t) = (ii/c) x I@~) t), 

with A = c(t - t’) = ]]?i - ?‘]I and n’ = (?I - ?)/A. 
The first term in the equation for ,?? represents the usual 
Coulomb-like ‘space charge field,’ the second term t,he 
‘synchrotron radiation field’ (containing the acceleration 

j and being perpendicular to 5). The fact that the above 
equations relate the Eh1 field at t to quantities at retarded 
time t’ makes it difficult to express the total field at t for 
a bunch with arbitrary charge distribution in a general 
orbit. The retardation condition, which depends on the 
orbit path and observer position ?i, must be solved to 
express the relation between F(t) and ?‘(t’). 

II. ONE-DIMENSIONAL BUNCH 

The treatment presented in this paper is an overview 
of work reported in reference [l]. We look at the elec- 
tromagnetic field for the specific case of a homogeneously 

Figure 1: ID bunch in a circular orbit. 

charged 1D bunch in a circular orbit with radius R (see 
Fig. 1). The ‘bunch angle’ is denoted (P,,, = l/R with 
I the (longitudinal) size of the bunch. The (constant) ro- 
tation frequency is w and the linear charge density is X. 
We consider a reference charge e at an angular position (pi 
relative to the front side of the bunch, i.e. -(Pi < ‘pi < 0 
(all angles will be taken positive in the direction of rota- 
tion). The force exerted on e is caused by all other charges 
in the bunch. One of those other charges is q, at angular 
position ‘p (--pm < ‘p < 0). At retarded time t’, charge 
Q emits a photon that reaches charge e at time t. Mean- 
while, the bunch has rotated over an angle -19b = w(t - t’), 
& < 0. The angular distance between q at t’ and e at t 
is denoted 0 = 06 + ‘p - (~1 (can be positive or negative). 
The retardation condition expresses the relat,ion between 
86 and (‘p - cpi). We obtain (for the case (P,,, < a - 2p) 

p-vl=leblk2arcsin , -2p5eb<o. 

Note that charges both to the left and to the right of e 
contribute to the field, hence two values for (‘p - cpl) exist 
for given &,. 

We now consider an infinitesimal charge dq 2 XRdp 
at angular position p. It causes an electric field dE at the 
position of reference charge e and a force dF given by 

dF = e{dl?+ppe’, x (G x d,??)}. 

where the force contribution by the magnetic field has also 
been taken into account (note that p is constant). Here, 
the coordinate system (z,y) has been used, with e’, the 
unit vector at Fl in the tangential direction, and .+$ in the 
radial direction. The total force on e caused by the entire 
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bunch is then found via integration 

=,lh d’ 3 % (sr$dp ‘.i gdp) ’ 

III. TANGENTIAL FORCE 

The expression for the tangential force 3= can now 
be found analytically. For this purpose, the variable IJ is 
introduced 

In the limit E 1 0, the separate integrals are not finite, but tJ(e,)= 1-b 

( e2 )-l,2 

w 
, 

only their sum is relevant. The z and y components of the 
force are given by and the tangential force reads (still assuming pm < ?r-2a) 

3-l! = (Pm J Wp, 
bunch 

3!d = (pm J +yt;c + (1 - pn&}dp, 
bunch 

3z = %l{P,(~4~P) - Pz(Vl, -@I, vi = v(obi), 

with 

Pz(%P) = LpJG+J$j/T& 

where the dimensionless quantities & and 3 are defined 
according to 

4m,, R2 s=:- E, 
47reol 

3= ?F. Note that 29 and 0s do not appear in the expression for 
Q 3z because their contributions cancel in the limit E 1 0. 

In order to find analytical expressions for 3= and 3Y, it This implies that the retardation condition only has to be 

would be convenient if E,, EY and n’ could be expressed as solved for the two edges of the bunch. 

functions of ‘p. However, these quantities are only known In practice, we are mainly interested in forces near the 

as a function of 8 and are given by centre of the bunch (denoted ‘0’ for convenience). In case 
$ pm < 1 - P (i.e. P < l), we obtain for the tangential 

n, = -(sinB)/W, ny = (1 - cos I9)/W, force in the middle of the bunch 

w = d/2-2cos8, 
3dO) = -+ P”r”& + w4). 

~ 
z 

= (2/3” - 1) sin B - 2p2 sin(28) + W/9(/?’ - cos 0) 

(psin 0 + W)3 7 It is seen that the force is unequal zero and negative, i.e. 
points in a direction opposite to the bunch velocity. It 

I 
Y 

= (1+/?2~~~B)(1-cos8)+W~sin~ can be shown that the minus sign is caused by a negative 
@sin0 + W)3 * contribution originating from the synchrotron field. The 

The retardation condition expresses B as an implicit func- space charge field gives a (three times smaller) positive 
tion of ‘p, with ~1 and p as parameters. It turns out that contribution, which is also unequal zero as a result of the 
it is impossible to express B as a finite number of explicit orbit curvature (cpm # 0). In case 7 > I, the above ap- 
functions in 9. As a solution to this problem, we simply P roximation is not valid. Instead, the following expression 
choose 6$, as new integration variable. This is a very useful must be used 
method, since both 19 and ‘p are explicit functions of &. 

3,(O) = - !+ 

213 
The relation between 8 and &, reads 

+ $ (12pm)4’3 + O(&). 

cosQ=l-8: sine=*-!!- pz-rQ2. 

( > d3 

2p ’ 
F2’ J---L Again, the large negative term is caused solely by the 

As an example, the equation for the tangemial force com- 
synchrotron field. In this expansion we see that 3=(O) 
is mainly proportional to Rm2i3 and independent of 7. 

ponent becomes However, y-dependency appears in higher order terms. 

3s = wm$ ( ~d$~~+~&$f/%) . 

Both the above expressions for 3=(O) (based on expan- 
sions of ~1 and ~4) are in good agreement with numerical 
calculations, which solve r~i and v4 exactly. 

By having changed the integration variable from ‘p (longi- IV. TANGENTIAL FORCE VS. POWER, LOSS 
tudinal position) to &, (representing time), the retardation 
condition now only has to be solved explicitely for the four The above results show that 3S(0) < 0 over the full 

endpoints of the integrals rather than for every single po- energy range 0 < /? < 1 and that the resulting bunch de- 

sition within the bunch. We have for given p and (pi celeration is caused entirely by the synchrotron field com- 
ponent. This leads to the thought that there could be a 

ebl = eb((p = -$%I), 862 = ob(cP = (01 - E), relation between the force 3=(O) and the power loss due 
063 = eb(‘P = pl + E), eb4 = eb(‘P = 0). to (synchrotron) radiation. The general relation between 
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the power % lost by a bunch in circular motion and the 
average force (F,) exerted on the particles in the bunch 
reads 

Pb = -NuR(Fz), 

with N the total number of particles. The power P, ra- 
diated by a single charge e in circular motion is given by 
P, = C,“=, P, with [3] 

p, = nwe” 
2nP 

47~50 R 
2~~4~2~~) - (1 --p2) J Jzn(t)dz , 

0 1 
and J, the Bessel function of order n. The total power 
Pb radiated by a bunch with given charge distribution can 
be split into incoherent (Pi,,) and coherent (P&,) con- 
tributions. For the subsequent calculations, we assume 
pi,, < P&,, which is valid for high current, low en- 
ergy, bunched beams (e.g.: 7 = 10, v,,, I= 0.2 rad and 
N = 2 . lOlo gives Pinc/Pcoh x 2 . love). We then get 
for the scaled, average force representing the decelerating 
‘radiation reaction’ caused by the coherent power loss of 
a homogeneously charged ID bunch 

--‘P3p$ + O(P3'p4 ) for P << 1 
(3z) = { -t3pm)2/3 + O(p$) for y >> II 

So, apart from a numerical factor close to 1, the average 
radiation reaction force (3=) is equal to the total tan- 
gential force 3$(O) exerted on the central electron in the 
bunch. In general, there is no a priors’ relationship be- 
tween the average force and the force experienced by the 
central electron, but such a relation seems to exist in the 
present case. 

V.RADIALFORCE 

The expression for the radial force 3y is found in a 
similar way as for the tangential force. We get 

3y = PmPy(~l, -P) - py (u2 t --PI - py (213, P) + py (?J4, P)l 

Py(V,p) = qln s + ‘~~~~~~), 
( > 

and vi defined as before. Contrary to the case of the tan- 
gential force, we cannot take the limit E 1 0 here since 3y 
is divergent. This is caused by the fact that the bunch has 
no radial dimension. As a solution, we think of the bunch 
as a sector (angle pm) of a 3D torus with major radius R 
(orbit radius) and minor radius a (bunch radius, a << R). 
Then, we must set [4] 

a 
EXPR* 

So, we calculate 3; according to the 1D model, but we use 
a finite value for E that approximately takes the properties 
of a 3D bunch into account. 

We now consider the value of Ty in the centre of the 
bunch. Assuming E < p,,, < 1, expansions are used to 
find the most important contributions. We get 

3-Y (0) = 
Cl+ P2)Pm ln(rp,Pe) + O(cpk) for P < 1, 
5 pm ln(cp,PE) + O(pZ3) for y>>l. 

In the first case (/3 << l), it turns out that the force is 
entirely due to the electric part of the space charge field. 
The magnetic force and the synchrotron field contribution 
can be neglected. Additionally, the expression for 3y(0) 
is in perfect agreement with results obtained from an EM- 
statics approach. In the second case (7 >> l), the force 
is mainly caused by the synchrotron field. In both cases, 
we see that 3y(0) is positive, i.e. points in a direction 
away from the centre of curvature. Moreover, 3y (0) is 
inversely proportional to R and almost independent of 7. 
Finally note that the above expressions for 3y(0) are in 
good agreement with numerical calculations, which solve 
‘~1 through ~4 exactly. 

VLCONCLUSIONS 

Self forces in a ID bunch were calculated using 
LiCnard-Wiechert field expressions. By choosing a con- 
venient coordinate transformation, an analytical expres- 
sion for the force vector has been found and it is shown 
that the retardation condition only needs to be solved ex- 
plicitely for the two endpoints of the bunch. This can be 
done numerically or by making an analytical expansion in 
terms of the bunch angle. It follows that the self force 
in the middle of the bunch has non-zero radial and tan- 
gential components. For low energy bunches (/3 < l), 
the tangential force is almost zero while the radial force 
has a finite value that is in perfect agreement with the 
result of EM statics. For high energy bunches (7 >> l), 
these forces reach a limiting value. Over the entire energy 
range, the tangential force points in a direction opposite 
to the bunch velocity and seems to be closely related to 
the coherent radiation reaction force. 
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