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Abstract 

Coupling impedances of a single small hole in vacuum- 
chamber walls have been calculated at low frequencies. To 
generalize these results for higher frequencies and/or larger 
holes one needs to solve coupled integral equations for the 
effective currents. These equations are solved for two spe- 
cific hole shapes. The effects of many holes at high fre- 
quencies where the impedances are not additive are studied 
using a perturbation-theory method. The periodic versus 
random distributions of the pumping holes in the Super- 
conducting Super Collider liner are compared. 

I. INTRODUCTION 

Pumping holes and slots are very typical and numer- 
ous discontinuities of the vacuum chamber in accelerators. 
The contributions of a small hole to the beam-chamber 
coupling impedances at low frequencies (below the cham- 
ber cut-off) have been calculated analytically [l, 21, and 
the results coincide well with subsequent simulations and 
measurements, e.g. [3]. The approach is based on the Bethe 
theory of diffraction by small holes [4], which can be ap- 
plied when the wavelength is large compared to a typical 
hole size, and the hole size is small compared to that of 
the beam-pipe cross section. Due t,o the impedance addi- 
tivity below cut-off, this theory gives reasonable estimates 
for many holes at low frequencies. 

In the present paper we attempt to generalize this ap- 
proach for a single hole with dimensions comparable to 
or larger than those of the chamber cross section. This 
leads to integral equations that are solved for two particu- 
lar cases. 

AI, frequencies above cut-off the problem is more com- 
plicated since there is no additivity of contributions to 
the coupling impedance from different discontinuities. To 
study the impedance of many holes above cut-off we use a 
model based on the perturbation method. This model al- 
lows us to compare the impedance for periodic and random 
distributions of pumping holes in the Collider liner. 

II. INTEGRAL EQUATIONS 

To calculate the coupling impedance we have to find the 
fields induced in the chamber by a given current perturba- 
tion, e.g., by a relativistic point charge. Taking as a zeroth 
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approximation the fields in the chamber without hole, one 
can consider them as incident electromagnetic waves on 
the hole. According to the Bethe theory [4], the fields 
diffracted by the hole can be obtained as those radiated 
by effective surface “magnetic” currents, which have to be 
introduced to satisfy the boundary conditions on the hole. 
Then integrating the fields along the beam path one can 
obtain coupling impedances. As a result, the longitudinal 
impedance of an arbitrary hole in the chamber with the 
circular cross section of radius b can be written as 

Z(w) = -& /l,,, dStCik”J, : (1) 

where k = ullc and J, is the Fourier-harmonic of the az- 
imuthal component of the effective “magnetic” current in- 
duced by charge q in the hole. The impedance for an ar- 
bitrary chamber cross-section can be obt,ained using an 
expansion over eigenfunctions, e.g., [5], and for the longi- 
tudinal case it also includes only the effective-current com- 
ponent, which is transverse to the chamber axis. The effec- 
tive surface current J’ and charge p should satisfy integral 
equations 

dS’ (J,O,G - J,V,G) , 

~zoH,(q = & SJ dS’ (cpV,G - z%JuG) I (2) 
hole 

and the continuity condition divy = iwp, where 20 = 
120&, G(R) = exp(ikR)/R, R = IF- ?‘I; r’: r” E S, J’= 

:(?I), and (u, v) are the local coordinates on the hole, with 
& being parallel and & transverse to the chamber axis 2. 
According to [4], E, and H, here are Fourier-harmonics of 
the beam fields on the wall in the chamber without hole, 
which are equal to E, = ZsH, = Zsqexp(ikr)/(2xb) in 
the round pipe. 

In the case of a small hole (h < b) at low frequencies 
(w << c/b) one can consider the beam fields to be the same 
everywhere on the hole and reduce the problem to an elec- 
trostatic one [4]. Then the impedance can be obtained 
analytically in terms of hole polarizabilities [l, 2, 51. In 
the case of a long slot (length I >> 6) or when the trans- 
verse hole size is larger than the pipe radius, it does not 
work. 

However, one can solve the general problem for two spe- 
cial cases. The first one is mostly of academic interest, 
namely, the infinitely long narrow slot, width w << b, in 
a perfectly conducting pipe. The only dependence on z 
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for such a slot is J,p c( exp(ilcz). Substituting J, = cp, 
J, = 0, one can reduce Eqs. (2) at frequencies w << c/b to 
a single equation for Jz, which has a solution 

Jz(u, z) = zeikz 
J(m,2;2 - I2 ’ 

where ]u] < w/2. Since J, = 0, the impedance of such a 
slot vanishes, cf. Eq. (1). This answer follows as a limiting 
case from results for an elongated elliptic hole [l], and was 
also obtained in [6]. From the physical point of view, the 
charge drags the static field pattern along the chamber 
without producing any distortions. The field distortions 
could only be produced by the slot ends. It means that 
the low-frequency impedance of a long (I >> 6) narrow slot 
is independent of slot length. 

The second case is a narrow transverse gap of length 
g << b separating two pieces of the infinite beam pipe. Due 
to the axial symmetry there is no current dependence on ‘p 
when the beam goes along the axis. In the case of kg < 1, 
Eqs. (2) after integrating over ‘p are reduced to 

&(z) = -ik J 
g/2 

dz’eikz’A-(z - z’)J~(z’) ) (3) 
-91-J 

where K(262) = (1 + x2)- 3/22Fl 
Eq. (3) has a solution 

[l/2,3/2,1, (1+ x”)-‘1. 

Jdx) = 
4209 

wk2g2 ln(l6b/g) J& ’ 

which gives the low-frequency impedance of the gap 

Z(w) = i zoc 
2wb ln( 16b/g) ’ 

i.e., the capacitance C = 2~ob ln( 166/g). This result is nat- 
ural since the gap cuts the image low-frequency currents 
in the wall and works as a capacitance. In a real accelera- 
tor chamber there are usually some electrical connections 
of chamber pieces separated by gaps, e.g., cavity walls or 
through the ground. Low-frequency currents flow through 
these connections, which have lower reactance in this fre- 
quency range than the gap, 

A similar answer for C can be obtained from the plane 
electrostatic problem: find a capacitance per unit length 
of a gap g separating two half-planes. The problem can 
be easily solved by conformal mapping, and the result is 
2~c ln(4A/g)/r. It includes the log-dependence on a cut-off 
parameter, A > g. Comparing to our cylindrical problem 
it seerns natural to put A N 2b, while the length is 2rb. It 
gives us impedance (4) up to a factor of the order of 2. 

To compare with numerical results we computed wakes 
in the chamber b = 2 cm with a narrow gap g surrounded 
by a cavity with length I and depth h, by means of the 
code ABC1 [7]. Th e cavity inductance is L = pclh/(2sb), 
and such a cavity-gap system will have resonances at 
w, = l/v%?, i.e., with wavelength X, = 2dm. 
Figure 1 shows a good agreement of this formula with 
ABC1 results. 
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Figure 1. The resonance wavelength versus gap width. 

III. PERIODIC OR. RANDOM STRlJCTlJRE 

The design of the liner inside t,he Superconducting Super 
Collider (SSC) Collider beam tube, which has to screen 
the cold chamber walls from the synchrotron radiation, 
anticipates a lot of small pumping holes. With the hole 
radius T = 1 mm and b = 1.5 cm the number of holes 
should be nearly 1500 per meter, and their total number 
in the ring is about 10’. There will be M = 15 holes in 
one cross section, and such rows will be spaced by dis- 
tance D = 1 cm. The low-frequency impedances pro- 
duced by these holes can be calculated as in Refs. [l, 21: 
Z/n N -iO.15 fi and ZL N -i18 MR/m for this specific 
case with the liner wall thickness 1 mm. To study effects 
of periodicity of liner holes at frequencies above cut-off we 
introduce a model that works for wavelengths large com- 
pared to the hole size, i.e., below f - c/(2h) 21 150 GHz. 
Namely, we replace a row of M holes in one chamber cross 
section, which has a discrete axial symmetry, by an ax- 
isymmetric small enlargement with the triangular (in the 
longitudinal direction) cross section of depth h = r/2 and 
base g = 2r. We will assume that the impedance of ,%4 
holes in a row is that of such a discontinuity multiplied by 
azimuthal factor 4 = Mr/(wb), cf. Ref. [l]. The model has 
small parameter E = h/(2b), which is l/60 in our case. So, 
one can apply the perturbation method for periodic struc- 
tures of small discontinuities that was developed in [8], and 
it’s generalization to broken periodicity [9]. It makes use 
of an expansion over E in boundary conditions and gives 
the impedance at’ low frequencies and at resonances in an 
analytical form. The low-frequency impedance due to en- 
largements is 

z/71 = -iZoE2G/2 5pq, (pC),lo(pC) + O(E3) : (5) 
p=l 

where D is the structure period, G = 2?rb/D, Im(x) are 
modified Bessel functions, and C, are Fourier coefficients 
of the boundary shape, 

Cp = (- l)p2slDIsin(~~s12D)l(71-ps/ao)12 (6) 
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for triangular perturbations. The resonant frequencies 
fp,, of the r-th radial mode, bandwidths (Mf),,,, and 
impedances Z,,, are 

f Pb' = c/(4ab) (PC + &.W> , 

(2Af)p,r = fp,r~~p,v/(2b) [I + (~oJPG)‘] > (7) 

Zp,rln = Zo&2C;2b/Sf,,v [ 1 + (j~,./pG)~] -2 : 

where jcr are roots of the Bessel function Jo(z) and 6f is 
the skin-depth at frequency f. From Eq. (5) (Z/n) ‘4 = 
-iO.17 R, which is close to the exact answer for holes at 
low frequencies and justifies the choice of the model param- 
eters. An important point is that Eqs. (5) and (7) work 
for an arbitrary dist.ribution of perturbations on the ring; 
one has only to replace period D by the ring circumference 
27rR and take proper C,. In this case N = 2rR/D iden- 
tical perturbations are distribut,ed along the ring. To take 
into account various insertions that violate the periodicity, 
e.g., interaction regions and warm pipe sections without 
holes, we consider the number of perturbations K 5 iv. 
In general, new coefficients CjK’ are related to those C, 
for a single perturbation on the ring. Let us assume that 
perturbations are randomly displaced from their positions 
in exactly periodic (period D = 27rR/N) structure and 
the deviations have the Gauss distribution with dispersion 
(bD)“. Then th e averaged over distribution coefficients are 

[CjK’]” = F,(K)(6)c2 
P ’ (8) 

FjK’(6) = 1<(1 -G) + CpFp(K) - &(l - (’ )si”2apK’N P sin2rp/N 

where C, are given by Eq. (6) with D --+ ~TR, cp = 

exp[-(27rp6/N)2] and FjK) = [sin(apli’/N)/sin(xp/N)12. 
In the case of the exactly periodic structure, S = 0, we 
have cp = 1 and Fp’x’(O) = Fr$10 E [0, K2], with max- 
ima K2 for p = Nl, 1 = 0, 1,2,. . If I< = N in addition, 
FcK) = IV2Sp N,, i.e., all resonances p # Nl vanish, and 
thPe case of the structure with short period D = 2xR/N 
is recovered. Figure 2 shows the hole impedance for this 
case. The wall conductivity of copper at room temperature 
~7 = 6 lo7 (0 m)-’ was taken just for reference. Reso- 
nance values should be scaled 0: fi x v’%%. Certainly, 
it gives the worst and, fortunately, unrealistic case, since 
for the real design the exact periodicity is broken. 

Let us consider a more realistic model: blocks of length 
L = 15 m containing the periodic hole structure (magnets 
with a regularly perforated liner inside) are separated by 
short insertions without holes (rf joints). Using the method 
of Ref. [9], one can calculat,e the damping of resonances 
in Figure 2 due to periodicity violation; it is by a factor 
0.03-0.05. So, the maximal resonance values of @Z/n are 
8-12 Q, according to the block model. 

One can go further and destroy periodicity inside blocks 
by placing holes not exactly in one transverse row, chang- 
ing steps between rows, etc. The impedance estimate for 
this case (“random” hole distribution) can be obtained 
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Figure 2. Resonances of the exactly periodic structure 

from Eq. (8) with cp T 0. Then FjK’(6) + Ii; that means 
the incoherent sum of contribution from different pertur- 
bations, and due to overlapping of small resonances we get 
ReZ/n N 0.2 0, i.e., approximately the constant value 
in the frequency range above cut-off (7-50 GHz). In this 
case we have something like a broad-band impedance with 
Q = 1, since $ReZ/n(f>f,,t) N 611mZ/nj(f<fcut) 2 
0.2 s1. 

IV. CONCLCSIONS 

The integral-equation approach allows one to calculate 
the impedance for two examples when the hole is not, small. 
Unfortunately, these cases are of mostly academic interest. 

The impedance of many small holes in the SSC Collider 
liner is studied at frequencies above cut-off using a model. 
It is shown that random hole distributions give lower 
impedance than periodic ones in this frequency range. It 
is reasonable to introduce some periodicity violation in the 
hole pattern. 
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