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A bstract 

A formalism is developed for the analysis of collective in- 
stabilities in standing-wave systems. The analysis per- 
mits a unified treatment of the coupled-cavity free-electron 
laser, relativistic klystrons and other high power mi- 
crowave sources. Coupling from both transverse and lon- 
gitudinal beam motion is included in the calculation of the 
transverse and longitudinal impedances. 

I. INTRODUCTION 

An understanding of high-power microwave sources and 
their scalings is crucial to the future of high-energy 
electron-positron colliders. In fact, the tradeoffs between 
rf breakdown and beam break-up scalings [l] is responsi- 
ble for the current consensus that future linear colliders 
should be powered by sources with an operating frequency 
in the 10-20 GHz range. Slow-wave devices are expected to 
produce the power levels required at the lower frequencies. 
However, they have also exhibited, at higher frequencies, 
what is, in fact, an intrinsic problem for such rf sources: 
when the structure is small enough to couple effectively to 
the longitudinal beam motion, it also couples effectively 
to the transverse motion. This results in, among other 
undesirable phenomena, beam break-up and pulse short- 
ening [2]. 

To circumvent this scaling, the “coupling impedance” [3] 
of the desired longitudinal mode should scale indepen- 
dently from that for those TM modes which produce 
beam break-up. In effect, this requires circumventing the 
Panofsky-Wenzel theorem [4]. One method of accomplish- 
ing this has been proposed in the form of a ‘standing- 
wave” free-electron laser, in which transverse oscillatory 
motion is induced by a magnetic wiggler. Since the design 
orbit takes the beam off-axis, the premise of the Panofsky- 
Wenzel theorem fails, as does its conclusion. 
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In this work we derive a formalism for quantifying such 
effects in an idealized cavity immersed in an arbitrary 
plane polarized magnetic field. The formalism in essence 
extends the wealth of work on longitudinal [6] and trans- 
verse [?‘I instabilities to include systems where the design 
particle orbit is curved within the cavity. In such ‘tnag- 
netized cavities” the coupling impedance describing longi- 
tudinal bunching can depend on the applied field. This 
permits one to enlarge the rf structure, so as to reduce 
undesirable transverse wakefields, while maintaining the 
desired longitudinal coupling. Previous workers [S] have 
calculated the coupling impedances in a cyclotron reso- 
nance maser with a traveling wave interaction region and 
a single cavity. 

In the SWFEL, the power is produced in a series of 
uncoupled cavities (the rf is cutoff between the cavities), 
each of which is of order one wiggler oscillation in length. 
The FEL thus operates as a standing-wave device. The 
propagating beam provides the only coupling between the 
cavities. Numerical studies [9] of the SWFEL have exam- 
ined phase sensitivity and longitudinal particle stability. 
In fact, the standing wave FEL has many similarities to 
the relativistic klystron, the main difference between them 
being that the FEL produces power through the coupling 
of the transverse wiggle oscillation with the transverse E 
field, while the klystron couples the longitudinal compo- 
nents (E, with u,). 

II. COUPLING IMPEDANCES 

Assume that a bunch with unit charge enters a cavity at 
t = 0. The particles move transversely as well as lon- 
gitudinally, due the presence of a magnetic field. Their 
trajectory and velocity inside the cavity is 

r(z) = zl(z)?+ r&v(z) = ul(z)% + v,B. (1) 

As the bunch moves through the cavity, it excites cavity 
modes. Without loss of generality, we may consider a single 
cavity mode. The vector potential of the mode can be 
represented as 

A= $&h+h 12) 
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where a(r) satisfies the appropriate boundary conditions Further calculations of the shunt impedance require a 
on the wall and is normalized to the volume V of the cavity: knowledge of the cavity mode. Here we take the modes 

J d3rla(r)12 = V. 
of a rectangular cavity with transverse dimensions a and 

(3) b, and longitudinal dimension d. ~(0) = a/2 is at the cen- 
ter of the cavity. For the operational mode TEol,, the 

Also, q(t) is the amplitude of the cavity excitation and can shunt impedance is 
be determined from a knowledge of trajectory and velocity 
of the bunch: Rb 1P 4~ a,d -= 

4rc e L , 
q(t) = -- J dz’G(t - t)a(+,(z’),O, z’) -. 

Vl(Z’) Qolp 
-( -)2. 
WOlpV 2rA 

(11) 

v 77x2 0 VZ 
vz (4) 

For other modes (TE and TM), the shunt impedance is 

Here G(t) is the cavity response Green function: non-zero only if n is odd. With m even, and a TE mode, 

1 
G(t) = -sin SI,te-na’/2QA o(t), Qx (5) dLp 2&p (f)' sine 2 

- = QcII~(T)~+ (T)2( e ) ' Q (12) 
mnP 

where Rt = U: - ($$-)“, with WA the resonant frequency 
in the absence of damping and &A the quality factor of the Here sinB/B is the largest transit time factor with 0 = 

excited mode. e(t) is the step function. 
(2 f 7 f k,)d/2. When m is odd, 

We assume a unit charge test particle enters the cavity 
at time t = to with trajectory r2(2) and velocity vz(t). R!i “P RL, ($!I2 sine s 

The test particle will experience the cavity mode excited 
---=2- 
Q mnP Qolp (:)” + (3)2 A%---) ’ (13) 

by the first bunch. The longitudinal wakefield, defined to 
be the total energy loss of the test particle, is then Here A,,, = (mra,,,/rjLk,) a, and 0 = 

L When the mode is TM and 
(2*7&2k,)d/2. 

lVll(&,) = ; J J 
L 

dt 
0 0 

dz’G’(t, + e) 

m is even, 

din, 4* 

a(xl(4,0,4 
Vl(2’) Q(Z) - = .Ta(r2(z),~,z).-++) 

26Zd; (1 f ~~)2@!32. 
Qmn~ w~~PV’~ + (5)” 

(14) 

N’e are interested in the cases where the initial offsets Herel ?j2 = (?)“+ (??I” and the e = (2 * 7 kkw)d/2. 

for both the leading and trailing bunches are small. Then, When m is Odd, 
the dominant contributions to the longitudinal wakefield 
can be computed assuming bot,h bunches follow the same dulp 4* 

orbit: 

262d2 (@)2, 
-= w,,pv 62 + (7)” Q (15) 

m*P 8 

M(to) = FI Jdze’““/~*a(r(z),O, z) . $]2G’(ta). and 0 = (2 +Z y)d/2. 

(7) 
The transverse impedance is found from the Fourier 

The longitudinal coupling impedance is 
transform of the transverse kick per unit charge. For sim- 
plicity, we present results only for particle motion in z- 

Zjl(w) = J +O” dte”“‘Wll(t) = Ri 
1 direction (the wiggle plane). The transverse force experi- 

--oo 1 + iQx(% - E) . (8) enced by a unit charge test particle is: 

In Eq. 8, the longitudinal shunt impedance Ri is given by F =-idAz c -+$(;.A). 
c dt (16) 

RI _ 47r _ _ wxvl J drei”~z/~~a(z(z), 0, r) . !$]z. 
QX 

(9) The net transverse kick is 

This expression is valid for any particle orbit in the cavity, 
and includes both the transverse and longitudinal coupling. 

K(to) = J 
to+Lf% 

dtF,. (17) 
to 

As an example, consider the SWFEL in the limit 
that the betatron motion can be ignored (i.e., the be- 

Assuming the front and end walls of the cavity are per- 
pendicular to the axis, we can drop the surface term and 

tatron phase advance per cavity is small). The one- find 
dimensional vector potential for a planar wiggler, A, = 
$ow cos k,zji, can be used to find the particle motion: 

4rL L 
rl(z) = [z(O) - *sin k,z]f + O(y)?, K(to) = ‘i7- 

I to J J dz dz’G(to + =$ 
0 0 vz 

v(z) = -~c0sk,zi+u~i+0(~)‘. (10) 
Vl(Z’) a 

a(zl(4,0,4. ~~a(z2(x), 0,~) . 9I8) 
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Expanding K(t) with respect to an initial offset 10 of the 
leading bunch yields W’(to) = K(to)/zo: 

W(to) = ?I /” &ein~z~v~ -$a(x(z), O,z). F12G(1,). 
0 

(19) 
Using Eqs. 5 and 19, 

J 
+m 

Z:(w) = -ic dte’“‘W’(t) = Rf WA/W 

--co 1 + i&x( $$ - g) ’ 

(20) 
In Eq. 20, the transverse shunt impedance is given by 

R,I _ 4xc -- 
&X 

=I J dreinAzlu* ga(x(z), 0, t) $i2. (21) 
x 

Comparing with the longitudinal shunt impedance, 
Eq. 9, we note a derivative of t.he vector potential with re- 
spect to the transverse position. Thus, we can read off the 
results for the transverse impedance. For the TE modes, 
when both n and m are odd, 

Rk,,, 2 c mr 2 Rb(,, (3)” ’ 
-= w,,,,(T)- Q Qolp (?I2 + (f,” 

@)2. (22) 
mnP e 

When n is odd and m is even, 

Rh,, 2 c mr ,41, (?I” 
-= Y’,ntip(T)- 

sin0 2 

Q mnP Qolp (2)” + (9)” A’(+ ’ 
(23) 

For the TM modes, when both n and m are odd, 

(24) 
When n is odd and m is even, we get the well-known trans- 
verse BBU impedance: 

(25) 

For TM modes there is off-resonant DC deflection, which 
will be examined in a future paper. 

Using the above definitions for the impedances, BBU cal- 
culations proceed in the usual manner. For example, in the 
long beam, high Q limit, both transverse (y = Z) or lon- 
gitudinal (y = r, the delay in arrival time with respect to 
the synchronous electron) BBU from a single cavity mode 
can be found from t,he coupled equations: 

a a 
(7g + vz ~I)“Y = a(z,t), 

g+ 22 + w:a = Cy(z, t), (27) 

where, with a beam current I and a single cavity transit 
time To, the constant C is given by 

III. CONCLUSIONS 

In a typical SWFEL design, the interaction cavity is highly 
overmoded. As a consequence, a realistic wake consists of 
a number of superimposed modes. These modes will not 
be given by the idealized cavity modes described herein, 
but rather need to be calculated numerically for the par- 
ticular structure. These more realistic modes will produce 
some BBU growth through the conventional mechanism 
(that a particle slightly off axis couples to an E, field), 
and will also generate BBU through the magnetized cavity 
mechanism described herein. An analysis of BBU which 
includes both realistic cavity modes and wiggling particle 
trajectories is a topic for future research. 

REFERENCES 

[l] R.B. Palmer in New Developments in Particle 
Acceleration Techniques, edited by S. Turner (CERN, 
Geneva, 1987), Vol. 1, pp. 80-120. 

[2] G. Westenskow et al., Proc. 1991 IEEE Particle 
Accelerator Conference, Loretta Lizama and Joe Chew, 
eds., (IEEE, New York, 1991) pp. 646648. 

[3] S.A. Heifets and S. A. Kheifets, The Physics of Particle -- 
Accelerators, American Institute of Physics Conf. Proc. 
249, Melvin Month and Margaret Dienes, eds., (Ameri- 
can Instit,ute of Physics, New York, 1992), pp. 154235. 

[4] W.K.H. Panofsky and W.A. Wenzel, Rev. Sci. Instrum. 
27, 967 (1956). 

[5] A. M. Sessler, et al., Nucl. Instr. and Meth. in Phys. 
Res. Ag& 592 (1991). 

[6] V.K. Neil and R.K. Cooper, Part. Accel.1, 111 (1970); 
E.Keil, et al.,Nucl. Instr. and Meth. in Phys. I&s. 127 
475 (1975). 

[7] W.K.H. Panofsky and M. Bander Rev. Sci. Instr. 39, 
206 (1968); V.K. Neil, L.S. Hall and R. K. Cooper, Part. 
Accel.2, 213 (1970); A.W. Chao, B.Richter, and C..Y. 
Yao, Nucl. Instr. and Meth. in Phys. Res. I&l (1980); 
R.L. Gluckstern, R.K. Cooper and P.J. Channell, Part. 
Accel. I6, 125 (1985). 

[8] R.J. Briggs, S. F. Paik, and A.H. Gottfried, IEEE 
Trans. on Electron Devices, ED-18, 511 (1971). 

[9] W.M.Sharp et al., Proc. Conf. on Intense Microwave 
and Particle Beams, Int. Sot. for Optical Engineering 
(SPIE, to be published); J.S. Kim, et al. (these pro- 
ceedings). 

c= 
~*Gw: 4 longitudinal, 

3 
$&iw:$$ 

(28) 
transverse. 
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