
Transverse Impedance of an Iris in a Beam Pipe* 

S. Jiang, H.Okamotof R.L. Cluckstern 
University of Maryland, College Park, MD 20742 

Abstract 

In an earlier paper the longitudinal impedance of an iris 
was obtained in the form of an integral equation by match- 
ing the fields in the planes perpendicular to the axis at the 
ends of the iris. This equation was solved by expanding 
the field components into a complete set of azimuthally 
symmetric TM modes in the iris region and numerical re- 
sults were obtained, particularly for large beam pipe radii. 
The same method is now applied to the calculation of the 
transverse impedance, where both asymmetric TM and TE 
modes are needed in the expansions. Once again the re- 
sults are obtained for large beam pipe radius and a wide 
range of values of the relative values of the iris radius, the 
iris thickness, and the wavelength. 

I. INTRODUCTION 

In previous papers we examined the longitudinal coupling 
impedance of an iris in a beam pipe. We first treated the 
case of an iris of zero thickness[l], obtaining a variational 
form for the impedance, and numerical values by expand- 
ing the trial function into a truncated orthonormal set. 
The results were presented as functions of kb for various 
values of (a-b)/b, w h ere the pipe radius is a, the iris radius 
is b and the frequency is kc/2x. 

In a subsequent paper[2] we considered the case of finite 
iris thickness g, again constructing a variational form for 
the impedance. In this case however, we used a set of 
matrix equations for the coefficients of the fields in the iris 
region. In this paper we were particularly interested in 
the limit a/b --* 00 corresponding to the impedance of a 
circular hole of radius b in a transverse conducting wall 
of thickness g. In all of these studies only TM modes are 
generated by the drive beam. 

In the present paper we examine the transverse (dipole) 
coupling impedance for an iris of finite thickness. In this 
case we need both TM and TE modes to satisfy all the 
boundary conditions. Field matching leads to a set of 
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equations for the field coefficients in the iris region and the 
equations resulting from a truncation of the field expan- 
sions are solved by matrix inversion. Results are obtained 
as a function of the three parameters kb, a/b, and g/b. 

II. ANALYSIS 

The appropriately normalized source fields for an ultrarel- 
ativitic beam are 

Et(‘) = ZoHt x ez = (cos kz - jsin kz)Vt& (1) 

where we assume a time dependence exp(jwt) and where 
e, is a unit vector in the z direction. Here 

qJ)(r,fq = (3 - ;> case (2) 

in the pipe region (].r] 2 g/2), and 

do(r, 0) - d0(r, 0) = 
1 

( > - - - ; p case (3) 

in the iris region (]z] 5 g/2). The separation of the drive 
current into an even and an odd part in t allows the prob- 
lem to be treated as the sum of two less complicated prob- 
lems. 

For the even part in Eq. (l), we write the transverse 
fields in the pipe region as 

+ C&e 
-jPv(l*l-g/2)e2 x v,+, 

v=l 

+ cos kz Vt40 (4) 

“Ak 
ZoHt xe, = f c o _If_e-JPPws12)vt~p 

/.I=1 ‘P 

m BvPy * zke -jPv(lzl-g/2)e 1 x v 1~ t Y 

- j sin kr Vt&, (5) 
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where f stand for z? f g/2. Here ~,4~,/3,, and A, a.re 
parameters associated with TM modes, with 

,L$, =: (k2 - ~;/a~)‘/~ = -j(p;/a2 - k2)‘i2 (6) 

and Y, $,, p, and B, are parameters associated with TE 
modes, with 

By = (k2 - q;/a2)‘i2 = -j(q,2/a2 - k2)‘j2. (7) 

The functions 4,, and r,f+ are products of sin 6 or cos 0 and 
Jl(p,r/a) with JI(P,) = 0, or Ji(q,r/a) with J[(q,) = 0. 

In the iris region we replace a by b and write 

00 
Et = xF( cosP,t Vt& 

C=l 

+ ~G,cos~,,z e, x Vt$+ +coskr V& (8) 
q=l 

and 

ZoHt x e, = - 
Oti Fk 

jC-I-sinptr Vt& 
(=l 4 

G&l - 
jc7 

sin&r e, x Vt& 
rl 

- jsin kr Vt&. (9) 

We now equate Eqs. (4) and (8) at .z = g/2 for Et over 
the range 0 5 r 5 a and thereby obtain A,, and B, as a 
sum over various terms involving 40, $0, Fc and G,. Then 
we equate Eqs. (5) and (9) at z = g/2 for Zo Ht x e, 
for 0 5 r 5 b and obtain Ft and G, as a sum over various 
terms involving $0, $0, A,, and B,. By eliminating A, and 
B, between the two resulting sets of equations, we obtain 
the matrix equations for Fc and G, 

c Ft~UEc’ + c G,: Vtoj = Pt 
C’ rl’ 

x FcVCla i- ~G,JJq,~ = Qq 

(10) 

(11) 
C’ ‘I’ 

where the parameters U, V, W, P, and Q are explicit sums 
of integrals involving the Bessel functions. Equations (10) 
and (11) can then be solved for Ft and G, once we truncate 
the sums over I’ and 7’. A parallel analysis for the odd 
part of the source field, yields a similar set of equations. 

Finally, we obtain an expression for the impedance as an 
integral over the three faces of the iris surface (% = &g/2 
and r = b). This involves a term independent of Fc and 
G, as well as ones proportional to Fc and G, for both the 
even and odd source terms. 

imaginary parts of the impedance as a function of kb for 
a/b = 2,g/b = 1. A matrix size of 40 x 40 appears to be 
sufficient for convergence in this case. The real part of the 
impedance appears to start at kb N .9 corresponding to 
the onset of a propagating TEli pipe mode at ka = 1.84. 
The onset of the propagating TMlr mode at kb - 1.9 cor- 
responding to ka = 3.83 also shows clearly. 

In Fig. 2 we show the results for a/b = 10,gjb = 1. It 
now appears that the contribution from the TEii mode 
for 1.84 < ka < 3.83 is of the order 10B3 compared with 
that from the TMir mode for ka > 3.83. For reasons 
not yet well understood, it appears that the TE modes 
are suppressed for large a/b. It should be noted that, for 
large a/b, larger matrices are needed for accurate numerical 
computation. 
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Figure 1: bZ,(k)/Zo vs. Lb for a/b = 2, g/b = 1. 

In Fig. 3 we show the results for a/b = lOO,g/b = 1. 
The TEii mode is now of order lo-’ compared with the 
TM11 mode. And in this case we need a matrix of 250 x 250 
to obtain suitable numerical accuracy. 

Finally, we explore the case of a zero thickness wall by 
doing numerical calculations for g/b = 0 as well as for very 
small g/b. In Fig. 4 we show the result for a/b = lO,g/b = 
0. Once again the contributions from the TE modes are 
much less than those for the TM modes. 

III. NUMERICAL RESULTS 

We have obtained the transverse impedance for several 
sets of parameters. In Fig. 1 we show the real and 

3391 
PAC 1993



O@i I 
- 06 -I I I 
h? 
z= Y c4 
7 y 
zz = ‘2 1 O/h / 
2 

0 ‘I 1, 
PL/lrJ”*------- 

‘&--.----- -+-----,-----,7---l 

bb ’ 
5 

05 

04 

E, 
A 
-* 
N 
50 2 

2 

0 t 

-. 

CO ----- 1 

04 

03 

2 
-2 0 2 
Y 
-2 
N 
50’ 

2 

09 

j 1 
<------ -- 

.-_...- .- .--. -~-- 

Figure 2: bZ,(k)/& vs. kb for a/b = 10, g/b = 1 

Figure 3: bZz(k)/Zo vs. kb for a/b = 100, g/b = 1. 
IV. SUMMARY 

We have briefly outlined the analysis for the transverse 
coupling impedance of an iris in a beam pipe and have 
implemented a numerical procedure to obtain values for 
different parameters. It appears that both TE and TM 
modes in the pipe region are needed to satisfy the bound- 
ary conditions. However the TE contributions fall rapidly 
to zero as a/b becomes large. 

In future work we hope to obtain a variational formu- 
lation for the impedance, particularly in the case where 
g/b -+ 0. In addition we would like to obt,ain the limiting 
forms for a/b -+ 00 for arbitrary g/b. 
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Figure 4: bZ,(k)/Zo vs. kb for a/b = 10, g/b = 0. 
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