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Abstract

Observations of nonlinear coupling of longitudinal modes
in the Fermilab TEVATRON have been recently identified as a
manifestation of parametric coupling.1 In this model, a
spatially uniform, finite-amplitude, longitudinal perturbation
is applied to the beam, which then decays into two or more
daughter waves as a result of this coupling. Selection rules
are derived which are based on frequency and phase matching
conditions. These selection criteria are obtained using a
multiple time-scale expansion of the weakly non-linear Vlasov
equation governing longitudinal motion.

INTRODUCTION

Parametric decay is a wave-wave scattering process whereby a
driving wave applied to a system can transfer energy into
oscillatory modes of the system. For our case, the driving
wave is an external voltage applied to a coasting, unbunched
beam. The oscillatory modes are the longitudinal modes of
the beam. Only those modes which obey the selection rules
of parametric decay are allowed to be excited. This phenomena
was observed in the Fermilab Tevatron while doing a
longitudinal beam transfer function measurement of 150 Gev
beam.

EXPERIMENTAL OBSERVATION

The setup for the beam transfer function measurement was (o
use a network analyzer to drive the beam via a longitudinal
kicker, while monitoring the response with a wideband
reasistive wall pickup. The return signal from the pickup was
passed through a splitter so that the beam spectrum could be
observed concurrently on a spectrum ana]yzer.2 During this
study the proton beam intensity was 5x1012 ang O,/p was

about 2x10-3- The network analyzer scans were done at
harmonics of the revolution frequency (47.7 kHz) with a span
of 500 Hz. The spectum shown in Figure 1. is the beam
response to a scan with a center frequency of 47.7 MHz.
Figure 1a. shows the high frequency end of the spectrum and
Figure 1b. shows the low frequency end. There were no
excited harmonics in the middle frequency range from 2-45
MHz.
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The observed spectrum shows some remarkable features. The
beam has responded to the driving voltage at multiple
frequencies, and all of this harmonic content is at frequencies
lower than that of the drive. There also appears to be a mirror
symmetry between the high and low frequency ends of the
spectrum (disregarding the noise at very low frequencies).
These properties indicate a nonlinear mechanism, and are a
natural consequence of parametric coupling. The overall
structure suggests the requirement that energy be transferred
from the driving wave to pairs of longitudinal modes whose
individual frequencies sum up to the that of the pump wave,
Wy + W02 = Qe -

THEORY

The system is described with the Vlasov equation written in
the conjugate variables of longitudinal motion:
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where 6 = @ + kye is the revolution frequency, and ¢ is due
to wakefield effects. Perturbing the ideal beam distribution
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function, the perturbative term can be expressed as an
expansion in longitudinal modes:

f=fo+ 2 1™

The wakefield potential may also be expanded in longitudinal
modes:

.’ 6’(0“ ZU ime

The phase matching condition comes from writing the
equation for one Fourier component:
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This condition is n+k=#1, the sum of the phases of the
daughter waves must equal the phase of the driving wave.

The system can be naturally broken down into different time
scales. The normal modes oscillate relatively rapidly
compared to the slower time scale for the growth or decay of
power in these modes. Thus, a multiple time scale
perturbation expansion can be done, treating the time scales as
independent variables.
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Making these substitutions, the first order equation is the
standard linear dispersion relation?:
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The second order equation yields a dispersion relation
describing the parametric coupling resonance, as well as the
frequency matching condition required for coupling to occur.
It also gives an expression for the growth rate of power in a
given mode?. The complete second order equation contains
both resonant and non-resonant terms. The multiple time
scale perturbation expansion allows removal of secular
behavior from the system by setting the sum of the resonant
terms to zero.  Identification of resonant terms gives us the
frequency matching condition, @, + @; = @,,. 1f the

frequency of the driving wave is €2, then @, + Q =,
must be obeyed in order to have energy transferred into a pair

of longitudinal modes. The secular equation may be solved for
the growth rate of the amplitude of oscillation of mode m:
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where V, is the amplitude of the driving voltage and
Yy = @, + k,€. Note that the growth rate is proportional to
V.

The dispersion relation near the resonance can be found if the
equation for the growth rate is also written for mode n. Now
there are two coupled equations which may be solved using
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normal mode analysis, Let 7, (7)) =Ae" ™ and
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In(ty))= Be B { v being the frequency offset from
resonance) then:
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It is possible to get this same result using a different method.

The complete dispersion relation can be found by taking the

Fourier transform of the Vlasov equation for one Fourier

component, substituting a driving voltage for one of the

wakefield terms, and then making substitutions to cancel the

current terms on both sides of the cquationsz
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If this complete dispersion relation is expanded about the
resonant frequency, the (inal expression is the same as that
found using the time perturbation technique.
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CONCLUSION

The theory of parametric coupling has been adapted to the
accelerator context in order to present a possible explanation
for experimental observations. The seleciion rules which
come out of the analysis are consistent with the characieristics
of the beam spectra. Pertinent features of the physical system
such as the growth rate and the dispersion relation have been
calculated. A program is being developed to explore the
behavior of the dispersion relation.
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