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Abstract 
Observations of nonlinear coupling of longitudinal modes 

in the Fermilab TEVATRON have been recently identified as a 
manifestation of parametric coup1ing.l In this model, a 
spatially uniform, finite-amplitude, longitudinal perturbation 
is applied to the beam, which then decays into two or more 
daughter waves as a result of this coupling. Selection rules 
are derived which are based on frequency and phase matching 
conditions. These selection criteria are obtained using a 
multiple time-scale expansion of the weakly non-linear Vlasov 
equation governing longitudinal motion. 

INTRODUCTION 

Parametric decay is a wave-wave scattering process whereby a 
driving wave applied to a system can transfer energy into 
oscillatory modes of the system. For our case, the driving 
wave is an external voltage applied to a coasting, unbunched 
beam. The oscillatory modes are the longitudinal modes of 
the beam. Only those modes which obey the selection rules 
of parametric decay are allowed to be excited. This phenomena 
was observed in the Fermilab Tevatron while 
longitudinal beam transfer function measurement of 
beam. 

EXPERIMENTAL OBSERVATION 

doing a 
150 Gev 

The setup for the beam transfer function measurement was to 
use a network analyzer to drive the beam via a longitudinal 
kicker, while monitoring the response with a wideband 
reasistive wall pickup. The return signal from the pickup was 
passed through a splitter so thar the beam spectrum could be 
observed concurrently on a spectrum analyzer. * During this 
study the proton beam intensity was SxlO1* and o,,/p was 

about 2x10s3- The network analyzer scans were done at 
harmonics of the revolution frequency (47.7 kHz) with a span 
of 500 Hz. The spectum shown in Figure 1. is the beam 
response to a scan with a center frequency of 47.7 MHz. 
Figure la. shows the high frequency end of the spectrum and 
Figure lb. shows the low frequency end. There were no 
excited harmonics in the middle frequency range from 2-45 
MHz. 
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Figure lb. Low Frequency Spectrum 

The observed spectrum shows some remarkable features. The 
beam has responded to the driving voltage at multiple 
frequencies, and all of this harmonic content is at frequencies 
lower than that of the drive. There also appears to be a mirror 
symmetry between the high and low frequency ends of the 
spectrum (disregarding the noise at very low frequencies). 
These properties indicate a nonlinear mechanism, and are a 
narural consequence of parametric coupling. The overall 
structure suggests the requirement that energy be transferred 
from the driving wave to pairs of longitudinal modes whose 
individual frequencies sum up to the that of the pump wave, 
um1 + W,,,? = ~nriw 

THEORY 

The system is described with the Vlasov equation wriuen in 
the conjugate variables of longitudinal motion: 

Jf + 6 af l ?f -g z+Ez=O 

where i = wg + Q is the revolution frequency, and i is due 
to wakefield effects. Perturbing the ideal beam distribution 
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function, the perturbalive term c;IIl he expre5sctI ;IS ill1 

~XpilIlSiOI~ in lon$tudinal Inodes: 

.f = .f’!, + I: .f,,,r”“” 
11, 

‘Ike wakefield pokn~ial Inay alr4) be ~X~illlClCCl in longitudiual 
modes: 

;- = 5%. c U,,,$“l’O 397 

The phase matching condition comes from wIiling the 
equalion for one Fourier cmnponont: 

?f,,J I ;,)[; f + coo dfo C’ + (.‘wg c ?f k -- 
Jt “’ 2x JE “’ *n ,,+k=,,, ’ U’, r)t = 0 

This condition is n+k=n~, Ihe sum of lht2 phasc.4 of lhe 
daughter waves Inust equal lhc philW of ku driving wave 

The system Cilll he Ilalurally broken down into dii‘ferenl tiInc 
scales. The normal modes oscilkilc relatively nIpidly 
compzued to the slower time scale for the growth or &cay of 
power in these modes. Thus. ;I Inulliple time scale 
perturbation ~XpinlSiOII WI1 bc tloIle. treating the liInc sGIltLs 2s 
independent vaIiahlcs. 

d J J +A--+ x=dr, Jr, 

f,,, = ;rr;,, + ~‘.f,~,~- where Jf,, = ,f,:, ( r, )p-‘% 5,) 

U,,, = Auf,, + /1’U,f, f. . . where (/,I,, = b,,, ( r1 )e-“““’ ‘C 

Making these substituk>ns, Ihe first order equ;Ition is the 

standard linezu- dispersion relation3: 

1 = (Puo)z 
dfo L 

z OF t/F 
2x1 J w,,, - fII( W() + kg) 

The swond order equation yields ;I dispersion relation 
describing the paramelric coupling resonance. as well as the 
frequency matching condition rcquiretl for coupling to (xcur. 
II also gives iII1 expression for lhe fr0wlh rate of power in ;I 

given mocio4. The complete second order equation contains 
holh resonant and non-resonzult lcrms. The multiple time 
scale perturbation expansion allows ranoval of secular 
behavior from the system by setting the sum of the res()n;lu1 
terms to zero. ldcntification of ICS(lIlillll IcrIns gives us Ihe 
fquency Inalching condition. co,, + ok = Co,,, If the 

frequency of the driving wave is Qi,, then fL’,, i- Qt,, = CO,,, 

Inust he obeyed in order 10 h;i\Y cncrgy LrziIIafcrretl into ;I pail 

Of lOllgitUCliIlid motlck. l‘he secular equation Inay be solved for 
the growth rale 01‘ rhc amplitutle of oscillation of mode 111: 

J F’,, ( TI ) _ --CW() h -- 
Jr, 2K 

I’, “0 x 

;lf’o‘ 

J 
r/t- J 

3foilC 
JE -~ 

W’, + Q() - n1y dF 

I 1 
Q() - ky J (u,‘y! rn# 

where V,, is the ;unplitude of the clriving voltage and 

y = W,, + k,,c: Note kd the growth rate is proportiod to 

“0 

The dispersion rel;ition nc’;u’ tile rcsouancc can be found if the 
equiltion for the growth r;Ite is also written for Intxle II. NOW 

there are two coupled equations which may be solved using 
h 

normal mode illlillySiS. Let l,,,( fl ) = A?“” ant! 
h 

I’, ( S] ) = BP vrl . ( v being lhe frequency offset from 

resonance) then: 

Jl‘O Jfo 

J 
L C/F 2 iiF 

X 
JE J JE ( f~r,r - IIl’J)(U’, - ‘1 y)’ (al,, - ny)(o,,, - rr1y? 

It is possihlc lo gel Ihis same result using a different method. 
The complete dispersion relation can he found by t,aking the 
l%urier traiJ:dorm of Ihe vkisw equatiou for one Fourier 
component, substituting 21 driving voltage for one of the 
wakefield iellns. and then Inaking substitutions 10 czmoel the 

current lerms on both sides of the equation5: 

7 
’ l~zw()? v--J ~‘;;y]I,-z@$J~~= 

((%)i 
gJ (IF 

- 7 /7X()V(,Z JF 

(2 xl- J ( (Or,, - my)( (I)‘, - qq2 

(m”)’ 
Jf 0 
L tit- 

X------yII1X,)V()Z J dF 

(2K)’ ( (0,” - my)? (co’, - ry) 

If this complctc‘ tlii;pU3ioIl relalion ia expanded about thC 
rcscmanl freyucncy, UIC linatl expression is the s;une ;IS thal 
found using the liinc pertUrhilti0Il kchniquc. 
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CONCLUSION 

Tile theory of parametric c0uplin, ” has bu.31 ;1dqml to t11c 
accelerator context in order to present a possible explanation 

for experimental obsrrv;ktions. The selection rules which 

come out of the analysis are consistent with the chactcristics 

of the beam spectra. Pertiniut features of the physical system 

aHA as the growth rate and the dispersion relation have been 

calculated. A program is being developed to explore the 

behavior of the dispersion relation. 
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