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ABSTRACT 

A formula for the longitudinal coupling impedance at fre- 
quencies above or below the tube cut-off is derived. The 
round tube is infinite in length, and has an arbitrary, 
smooth variation of radius over a finite interval. 

1. DERIVATION OF THE EQUATION 

The method described here may be a useful com- 
plement to general purpose programs for computation of 
fields, especially for high frequency phenomena. Based on 
a system of integro- algebraic equations, it gives analytic 
formulas for a first approximation, and also a numerical 
technique for very accurate solutions. A first report on 
the analytic and numerical results was given in [l]. Here 
I review the analytic approach and give an example. The 
method will be described for the case of the longitudi- 
nal impedance in a tube with circular cross section and 
infinite conductivity. It can be extended to treat trans- 
verse fields, wall resistance, and pipes of rectangular cross 
section. 

We take cylindrical coordinates (r, 4, Z) and suppose 
that the tube radius is given as R(z) = B--ES(Z), where the 
function s(t) is zero for 1~1 > g, and not necessarily even 
in Z. We assume that s has a continuous first derivative s’, 
normalized so that maxis’] = 1; thus s’(fg) = 0. With 
this normalization, E measures the effective strength of the 
wall perturbation; a perturbative method may succeed if 
c is small compared to 1. 

We work in the frequency domain, with the time de- 
pendence exp(-iwt). Attention is restricted to positive 
values of w, which suffice to express the wake field, thanks 
to the reflection property of the impedance, Z(w) = 
Z( -w)’ . The source is assumed to be axisymmetric, 
a rigid bunch with total charge q and charge density 
p(r,+,z,t) = (q/%r)X(z - pct)f(r) where J-X(z)& = 1, 
Jf(r)rdr = 1. It f o 11 ows that the only non-zero fields are 
(E,, E,, H+), all independent of 4. All fields may be 
expressed in terms of Ez., which can be written as 

E,(r, Z,W) = J 
dkeikzo(k,w)~ + e,(r, z,w), (1) 

r 0 
where x2 = k2 - (w/c)~, and 1, is the modified Bessel 
function of the first kind. The Fourier transform d, of the 
source term e, is any particular solution of the inhomoge- 
neous radial wave equation for E,, regular at P = 0. The 
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Fourier amplitude of the radial field is 

Er(r, k,w) = --$aEz’~~k’w) . 

The function 10(x&) h as simple zeros in the k-plane 
at the points k = &k,, s = 1,2,. * ., where k, = ((wb/c)’ - 

i%, V2 is defined to be positive for Iwb/cj > j,, and pos- 
itive imaginary for jwb/cj < j,,; the j,, are the positive 
zeros of the Bessel function J,. At any frequency above 
the lowest cutoff (wb/c = joi), there are zeros on the real 
axis. To dodge the corresponding real poles of the inte- 
grand in (l), the contour I’ follows the real axis but is 
indented slightly so as to go above the poles at k = -k, 
and below those at k = k,. This choice enforces the out- 
going wave boundary condition [2]; (see the discussion in 
the last section of Ref.[l]). We have assumed that a(k,w) 
is analytic in k; our construction of solutions will in fact 
yield an entire function of k. 

The boundary condition on the wall is that E = 
(E,, E,) be perpendicular to the tangent vector (dR, dz), 
or 

E,(R(r), 2,~) f R’(z)E,(R(z), t,w) = 0. (3) 

This condition leads to an equation for a(k,w) through 
the following steps: (i) write E, as in (l), and the corre- 
sponding expression for E,. constructed from (2); (ii) take 
the Fourier transform of (3) with respect to r; (iii) sub- 
tract I,(xb) from I,(xR(r)) in the integrand, and notice 
that the compensating addition gives 6(k - I). The result 
is 

a(l, w) = 
J 

dkM(1, k, w)a(k, w) + s(I, w) , (4 
I‘ 

where 
e’(k-‘)z 

M(I, k,w) = & lmg dr------ 
9 b(x4 

- [Uxb) - L(xR(r)) + ;R’(r)AtxR(4)] , 

(5) 

and 3 is the Fourier transform of 

S(z, w) = - 11 dkeik” 

. [ez(R(z), t,w) - $R’(z)%(R(z), z,w)] . 
(6) 

Henceforth we treat only the relativistic limit. In that 
limit the source term takes on the simple form 

S(Z, w) = ;"fi[z; i(w/c)eiwrlc. (7) 

0-7803-1203-I/93$03.00 0 1993 IEEE 3378 

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993



Below cutoff, (4) is an integral equation [3] for 
a(k,w). Above cutoff it is an integro-algebraic equation, 
since the values a(k,w) at the poles on the real axis con- 
stitute a discrete set of unknowns to be determined along 
with the continuous, nonpolar part. These values deter- 
mine the amplitudes of outgoing waves. 

By reversing the order of integrals we see that any 
solution of (4) may be written in the form 

a(k, w) = & / eg e-ik*q%,w)dt. 9 
Since the the region of integration is finite, u(k,~) is an 
entire function of k, as promised. 

2. FORMULA FOR THE IMPEDANCE 

An integration by parts on the first two terms of (5) 
puts the kernel in the form 

E kl- (w/c)” 
MCI’ k’w) = 2;; X(k - 1) J -o 

(9) 
This shows that the kernel is formally O(E), and there- 
fore suggests that the equation (4) might be solved by 
iteration when c is small. The first approximation is 
obtained by putting o = s under the integral in (4). 
Since the impedance is proportional to a(w/c,w), and 
s(w/c,w) = 0, th e 1 owest order impedance is U(e2). 

To evaluate the approximated integral of (4) at the 
synchronous point k = w/c we express 3 in terms of its 
Fourier transform and reverse integration order to obtain 

a(w/c, w) x 

$ l; d%e-iW+R’(%) 1; d%‘S(Z’,W)K(Z, 2, w) , (lo) 

where 

1 w 
I((%, z’, w) = yj-Y; 

J 
r dkeik(z-z’) ll(XR(z)) . 

xL(xb) 
(11) 

The integral (11) converges exponentially if R < b, but 
diverges for R > b. The divergence is an unwanted limi- 
tation since we wish to allow arbitrary R. By performing 
a contour distortion one can continue the integral analyt- 
ically from R < b to R > 6, and incidentally gain other 
benefits. Taking R < b we let the contour become an in- 
finite semi-circle in the upper (lower) half-plane for z - z’ 
positive (negative). The result is 

K(%, %‘,W) = ; c O” Jl(j~rR(%)lb)~it.(w)lr-zfl 
s=l ks(wPJl(L) * (12) 

For z # z’ the sums converge exponentially, regardless of 
the value of R. At z = zi and R = b the sum diverges, 
but if the integral on z’ is performed first there will be 
an extra inverse power of ks and quadratic convergence, 
uniform in R. 

The formula (10) now involves powers of E higher than 
the second through the presence of R(z) in the denomina- 
tor of (7) and in (12). To pick out just the c2 part we put 
R(r) = b in both locations. Invoking the usual definition 
of the impedance in terms of the wake potential, we find 
Z(w) = -%ra(w/c,w)/(~~(w/c)). Then from (7), (lo), 
and (12) we have the impedance to lowest order in c as 

Z(w) = $2 4&(?Lsgdu (13) 

. s~(z)s~(u)ei~,(~)I~-ul-iw(l-~)/c 

Below cutoff the k, are all positive imaginary, and the 
impedance is reactive as required; (the integral is real, 
since the integrand goes into its complex conjugate on 
% -+ ?A). 

A closer look shows that the formula (13) is actually 
invalid for the frequency w in a small neighborhood of 
each traveling wave cutoff, where wb/c = jos. The kernel 
K has an inverse square-root singularity at such points, 
owing to the factor l/k, in (12). It is therefore not small 
near such frequencies, and the iterative method fails. The 
same singularity appears in the field expansion (l), from 
the residue of the pole as it strikes the real axis. It is can- 
celled by a corresponding zero of a(k, w) at k = fk,, so 
that the amplitude of the newly appearing outgoing wave 
is finite. We have verified that this mechanism operates 
in the numerical calculation of Ref.[l], but it is a “nonper- 
turbative” effect that cannot take place in a lowest order 
calculation. In plotting results from (13), we delete small 
neighborhoods of the bad points, and let the plotting pro- 
gram interpolate nearby values to fill in the gaps. This 
is justified by the smooth beha[5 vior of Z found in the 
numerical solutions. 

As an example for arbitrary frequency, we take s(z) = 
41 + cos(wlg))l2, h w ere p is an odd integer, thus c = 
apldj/(2g). An exact evaluation of (13) for this model 
yields 

Z(w) = czog [ 4% [h(w) + q-w)] 

where 

[.f(ks(44 + f(ks(w), -y)i] 9 
(14) 

h(w) +&, [ = [(g2+2q(yp2, 

1 - exp[2i(k - w/c)g] (15) 
f (k,w) = b”[(k - w/c)~ - (rp/g)2]2 ’ 

The first term is imaginary at all w, and so is the sum for 
s > sm. The sum for s 5 s,,, is complex, and of course 
present only above cutoff. Its real part is nonnegative as 
it should be, corresponding to energy lost by the bunch 
to outgoing waves. The term h(-w) has poles, but they 
are cancelled by corresponding poles in the sum on s. 
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Figures 1 and 2 show a the real and imaginary parts 
of formula(14) for p = 5, b = lcm, g = 12cm, d = O.l2cm, 
thus e = 0.078. The frequency range (up to 143 GHz) is 
sufficient to compute the wake potential of a Gaussian 
bunch of length u = 1.2mm. Nothing prevents a treat- 
ment of still higher frequencies. Figure 3 shows the wake 
voltage corresponding to the impedance of Figures 1 and 
2, as a function of the distance from the center of the 
Gaussian bunch (positive in front), in units of c = 1.2mm; 
a positive voltage means energy loss. The persistent “ring- 
ing” behind the bunch is due to the narrow low frequency 
resonance (wb/c x 2.865) 

In Ref.[l], accuracy of numerical solutions was tested 
by checking the boundary condition (3). The same can 
be done in the analytic approach if we compute a(k, w) to 
order c2 for general k then construct the fields from (1). 

I wish to thank Robert Gluckstern, Karl Bane, and 
J. Scott Berg for much good advice and technical help. 
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