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Abstract 

Insertion device 
magnet gap allowed 

performance is limited by the minimum where P is the length of the small gap chamber and a is the 
by storage ring beam dynamics. In this distance of the electron beam to the chamber wall. 

note, we analyze the impedance of the vacuum chamber for 
the prototype small-gap undulator being built for the NSLS X- 
Ray ring, and discuss the consequent beam instability 
thresholds. 

I. INTRODUCTION 

A. Power Dissipation 

In the case of one bunch with DC current I, (Amperes), 
the power dissipation in the chamber is 

In order to optimize insertion device performance, we 
wish to operate with the minimum magnet gap allowed by the 
electron beam dynamics. A prototype small gap undulator[ l] 
(PSGU) is under construction for use in the Xl3 straight 
section of the X-Ray ring. In this note we consider the 
impedance of the PSGU variable aperture vacuum chamber 
and discuss its effect on beam stability. 

p = 1; 2 (RezJc-n20~o~ , (2.2) 

where IJ, = us/c is the one standard deviation bunch length 
divided by the speed of light. Approximating the sum by an 
integral, one obtains[4] 

P = &&?Z,) s , 
a*0 

(2.3) 
The PSGU chamber is made of 1 mm thick stainless steel, 

and is approximately 30 cm in length. It has an inner aperture 
which can be adjusted from 20 mm down to 2 mm (full). The 
device is situated at the center of a low-p insertion having 
values of the betatron functions 8,’ = 1.5 m and j3,’ = 0.33 
m at the insertion center. The small value of the vertical 
betatron function significantly reduces the effect of the 
chamber’s transverse impedance on the stability of the vertical 
betatron oscillations. Our results indicate that beam stability 
should be maintained with a 4 mm inner vertical aperture. A 
more detailed description of this work is given in ref. 2. 

II. REZSISTIVE WALL IMPEDANCE 

In the small gap undulator, the vacuum chamber is 
comprised of 1 mm thick stainless steel, with resistivity 
p = 80 x lo8 ra- m. The circumference of the X-Ray ring is 
170 m, so the effective radius R = 27 m. At the angular 
revolution frequency 0, = c/R = 11 MHz, the skin depth in 
the chamber is 6, = 0.34 mm and the surface impedance is 

2, = (1 - OS0 , where ?R, = p/a, = 2.4 x 10e3 P . 
The longitudinal resistive wall impedance at the nth harmonic 
of the revolution frequency, w = nw,, is[3] 

chamber length P = 0.3 m 
effective radius R=27m 
bunch length a, = 0.05 m 

In the case of a = 1 mm, we find 

I av M P 

0.25 Amp 25 3.5 watt 
0.25 5 17.5 
0.10 1 14.0 

B. Transverse Coupled Bunch Instability 

=n= y& ( 1 =, fi , (n >. 0) 

z-, = zn* 

(2.1) 

where the gamma function I?(3/4) = 1.2 can be approximated 
by unity. When an average current 4, is distributed 
uniformly in M bunches, the power dissipation is 

P=M(#+,(~~. (2.4) 

We now consider the parameters: 

The transverse resistive wall impedance Z I is related to 
the longitudinal impedance Z ]] by[3] 

z =~R=II== @ zLA -- I a2 n $Zlra ’ fi (2.5) 

*Work performed under the auspices of the U.S. Department 
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The transverse impedance can give rise to a transverse coupled 
bunch instability. The growth rate of the fastest growing 
coupled bunch mode is[5] 

cQ@ B’P Av = A (2.11) 
4xE 

1 ec -P - a’ Z>Z,(n=l) -.A-. , 
4xE R iG 

(2.6) 
%P 

where 0’ is the average value of the vertical betatron function 
in the small gap chamber, which in our case is approximately 
given by the minimum value in the insertion (p’ = 0.33 m). 
E = 2.5 GeV is the electron energy and q = 0.2 is the 
fractional part of the vertical betatron tune rY = 6.2. Taking 
0 = 0.3 m, R = 27 m, we find from Eq. (2.7) 

Rez = 6x106 - Q/m , 
* MEN’ 

and from Eq. (2.8) 

1 Z 
- = (720 se&‘) : . WV 
Tb MW13 

The radiation damping time is 5 msec at 2.5 GeV, hence 
radiation damping is sufficient to provide stability at 0.25 
Amp. In fact, the head-tail damping arising from running 
with positive chromaticity is stronger than radiation damping, 
so transverse instability should not be a problem due to 
coupled bunch effects even for a = 1 mm. 

C. Strong Head-Tail Instability 

The short range part of the transverse resistive wall 
wakefield can give rise to the strong head-tail instability, a 
single bunch effect. 

The resistive wall wakefield resulting from a Gaussian 
bunch is 

where WI is the maximum value of the wakefield, and Q = 
Ne is the total charge of the electron bunch. The threshold of 
the strong head tail instability is expected to occur when[6] 

Av = v, , (2.12) 

where Y, is the synchrotron oscillation tune, which in the X- 
Ray ring has a value Y, = 2 x 10m3. 

The maximum value WJI of the transverse wakefield is 
found from Eq. (2.17) to be 

g.r 
I 

= 4.7 x w qmZs , 
MM1’ 

(2.13) 

for a, = 0.05 m. An average current of 1 Amp in a single 
bunch corresponds to 3 x 10 ** electrons, or a total charge Q 
= 480 nC. Taking e = 0.3 m, /3’ = 0.33 m, E = 2.5 GeV, 
the tune shift defined in Eq. (2.16) is 

q‘%J) 
Av = 8 x 10” - 

l&Ml3 
(2.14) 

For 100 ma in a single bunch and a = 1 mm, we find Au = 
0.8 x 1Q3, which is slightly less than the synchrotron tune vg 
= 2 x 1(r3. We should be close to threshold for the strong 
head tail instability in this case. However, taking a = 2 mm, 
the tune shift is reduced to Au = lo”l, well below threshold. 
If in addition, we consider 250 ma uniformly distributed in 25 
bunches, then I, = 10 ma, and the tune shift Au = 10-j. 
Therefore, in this operating case, we are very far from the 
threshold of the strong head tail instability. 

WA WJ = -$ jz 1% &lo> (2.9) 
where 

g(E) = ,-tap /.- & e-x’$-h (2.10) 

The function g(t) is plotted in Fig. 1 of ref. 2, for 
-3 S t 4 3. The maximum value of g(E) is g = 1.28. 

Let us define the tune shift 
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Fig. 1. Profile of cylindrical scraper with inner 
radius a, outer radius b, and taper angle 8. 
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III. TRANSVERSEGEOMETRIC WAKEFIELD 

Bane and Morton[7] have considered the transverse 
wakefield of a scraper, as illustrated in Fig. 1. They 
considered a perfectly conducting cylindrical tube, and found 
that when a, 2 a, the transverse geometric wakefield for a 
Gaussian bunch is well approximated by 

28 28 ln 1 
w~“‘Fa n Go, l 1 

--e4~$m)(e nor frh7 mk%Jo (3.1) 

where Z, = 377 0. Taking 6 = ~12 and u, = 0.05 m, we 
obtain 

W,(o) = 3x10’4 n/m.3 
&M 

The result of Eq. (3.2) can be compared with the 
maximum of the resistive wall wakefield given in Eq. (2.13), 
P = 0.3 m, 

g, ( = 1.6 x 10” n,,,,s 
L 

mwl” 
(3.3) 

It is seen that for a = 1 mm, the resistive wakefield of Eq. 
(3.3) is larger than the geometric waketield of Eq. (3.2). 
When a = 2 mm, the two are approximately of equal 
magnitude. For a > 2 mm, the geometric wakefield of Eq. 
(3.3) will dominate. We can reduce the geometric wakefield 
by tapering the ends of the small gap chamber, i.e. choosing 
8 to be small. 

IV.LONGITUDINALGEOMETRIC WAKEFIELD 

When a bunch passes through the small aperture chamber 
illustrated in Fig. 1, there is a longitudinal effect due to the 
longitudinal geometric wakefield. This wakefield has a 
qualitatively different character depending on whether the 
bunch length is long, u,/b > 1, or short, u,/b < 1. When 
a,/b is small compared to unity, the beam will radiate energy; 
when u,/b is large almost no energy will be radiated and the 
wakefield will be inductive. 

In the case of the X-Ray ring we can restrict our attention 
to the regime of a long bunch. For a long bunch, it is known 
that when (b-a)/a 5 1 the inductance is proportional to[8] (b- 
a)2. For the present application we would like to know the 
inductance when (b-a)/a is large compared to 1. To determine 
this, we carried out a study using the computer program 
TBCI.[9] We first determined the wakefield of a long bunch, 
and fit the result to the derivative of the (Gaussian) bunch 
distribution in order to find the inductance L according to 

L=3E(!.gy) (8 s da (4.2) 

Further discussion of this result is given in ref. 2. 

We have also considered the sensitivity of the inductance 
to bunch length. We find that as long as u,/b 2 1, the 
numerical result is well-approximated by multiplying Eq. (4.2) 
by the factor 

[l+g!-=] 

To apply these results to the small aperture undulator 
chamber we consider the parameters a = 2 mm, b = 1 cm 
and a, = 5 cm. An inductance of 2 nH (I? = 90”) is 
insignificant, corresponding to 

z/n = o*L = 0.02 n . 
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w = - Ldydi . (4.1) 

The result is that asymptotically (for very long bunches), the 
inductance is well-approximated by 
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