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Abstract 

The location of a liner inside the collider beam tube is 
E,b = &n(* - ct). 

0 
being studied at the SSC Laboratory, in order to provide 
a synchrotron radiation intercept and to help enhance the 

If we Fourier transform Eq.(l) with f(w) = 

vacuum. There will be wake fields propagating inside the 
s f(t) exp(jwt)dt, we obtain 

liner following the beam fields incident on the pumping 
holes/slots on the liner. The effect of the wake fields may E;(w) = 2 exp(jlct). (2) 
be expressed through coupling impedances. This paper 
describes a method to evaluate the longitudinal coupling In Eq.(2), ZO = 1207r is the impedance of free space. 

impedance of slots/holes on the liner for a large range of Our task is to calculate the diffracted field and its prop- 

frequencies (O-60 GHz). agation inside the liner due to the incident field given by 
EC4 

I. INTRODUCTION 

The Superconducting Super Collider (SSC) beam is 
designed to have an energy of 20 TeV. There will be syn- 
chrotron radiation to reckon with, even though this is a 
proton beam. The location of a liner inside the collider 
beam tube is being studied at the SSC Laboratory. The 
liner will serve as a synchrotron radiation intercept and 
also help enhance the vacuum. Suitable pumping holes 
or slots are required on the surface of the liner. These 
pumping holes will result in the propagation of wake fields 
inside the liner, following the incident beam fields. The 
effect of the wake fields on successive bunches may be 
evaluated through the coupling impedances, which will de- 
pend on the geometry and distribution of slots/holes on 
the liner. Coupling impedances valid for low frequencies 
have been presented by Gluckstern [l] and Kurennoy [2]. 
A semi-analytic expression for the longitudinal coupling 
impedance of slots/holes valid for a large range of frequen- 
cies (O-60 GHz) is derived here and the results are com- 
pared with those from Refs. 1 and 2 and with available 
measurements. 

II. DESCRIPTION OF THE PROBLEM 

A schematic of the beam pipe and the liner is shown 
in Figure 1. The liner of inner radius a and thickness A 
is located inside the beampipe of inner radius b. A slot of 
length w and width d is located on the liner. The center of 
the slot is at t = 0. Our analysis is valid for round holes 
also, and we will use d to denote the diameter of the hole. 
The coordinate system is also shown in Figure 1. A single 
charge q travels along the axis of the liner with the speed 
of light c, and the field at the slot is given by 
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Figure 1. Slot details and coordinate system. 

III. DERIVATION OF WAKE FIELDS 

The charge relaxation time for our problem is of the 
order of lo-” s, and the skin depth is of the order of a few 
microns. We will use the method outlined in Collin [3] for 
the solution of our problem using the wave guide normal 
modes and the Lorentz reciprocity theorem. We will follow 
the notation in Collin [3] and Plonsey and Collin [4]. We 
will assume a time variation of ejwt and a z variation of 
e-j@, with w and /3 being the rotational frequency and 
the propagation factor, respectively. The fields are gov- 
erned by the Helmholtz equation and can be found in [3] 
and [4]. The fields for the TM mode, which contributes to 
the longitudinal coupling impedance, can be expressed in 
terms of the longitudinal electric field e, given by 

e, = Jn(kcr) (A cos(n8) + 3 sin(n0)). (3) 
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The J, is the Bessel function of order n with parameter rE,. 
The field at the metallic wall at r = a is zero. This im- 
plies Jn(lCea) = 0, and there are doubly infinite number of 
solutions p,, given by 

J,(b) = 0, PnVl = k,a, m= 1,2,3.... (4) 

The corresponding propagation factor is given by 

Pnm = *yz-$. (5) 

We will also need the propagation factor for rectangular 
slots with sides 2al, 2bl. It is given by [4] 

P,, = y/m, (6) 

where k is the wave number given by X = c. The propa- 
gation factor for the slot ,P will be high due to the small 
dimensions of the slot. This implies that the waves in- 
side the slot/hole will he heavily damped. The tangential 
electric field is zero at the wall everywhere except at the 
slot/hole, where it is non-zero. We will assume a magnetic 
wall at the slot, and this implies t,hat the tangential field 
at the slot/hole will be a maximum and the normal field 
will be zero. This will result in maximum possible power 
flow through the slot,. Since the normal field is zero, the 
diffracted electric field at the slot/hole will be equal to the 
negative of the incident beam field, and the mode inside 
the slot/hole will be a TE mode. In order to calculate 
the other components of the diffracted field at the slot, we 
can use the field continuity criterion given by the following 
equation: 

1 h,nm Jn’(Edl~) 
ez ,nm dr liner = Jn(Pnmrla) p=a 

1 de, 
=I -- 

e, dr 
= -p”. (7) 

slot 

We have used the upper case P,, in Eq.(7) to dis- 
tinguish it from the lower case p,, used in Eq.(4), which 
describes the boundary condition at the wall everywhere 
but at the slot/hole. If we assume the coefficients for the 
normal modes to be a constant, Eq.(7) will be satisfied for 
the sums of normal modes. The following equation results, 
and we can solve it to obtain the P,,m: 

%nJ~(Em) + UPS Jn(Pnm) = 0. (8) 

The magnetic wall at the slot results in the follow- 
ing equation, where a subscript s denotes the diffracted 
(radiated) fields: 

E,, = fi,.E, = -E,b = A$“. 
2TU (9) 

Using the ratio of normal modes with P,, in the 
Bessel argument, we get the following expression for the 
tangential diffracted electric field: 

zoq jkz 

x Jo(Pom) 
E,, = 2sae 

7: 7, Gk&Ln) 
. (10) 

P J#‘nm) 
n m nm 

It should be noted that the numerator of Eq.(lO) is 
summed over just n = 0 since other modes do not con- 
tribute to the longitudinal impedance. The diffracted field 
given by Eq.(S) will not satisfy the equation V x E = 0. 
There will be an imbalance, which we will call the magnetic 
current density J,: and it will be given by [3]: 

J, = --tia x E, = fieEsr - fi, Eas. (11) 

We can consider the J, at the slot as an oscillating source 
and compute the radiated fields in the +ve and -ve direc- 
tions using the Lorentz reciprocity theorem [3]: 

JJ (E,f x H, - E, x H;)lids 

= JJJ (J.E,f - H;.J,)dv. (12) 

The radiated fields in the +ve and -ve directions can be 
expressed by the normal modes multiplied by appropriate 
coefficients [3], and we can derive the following coefficients 
for the wake fields. The coefficients have been generalized 
with two indices n,m corresponding to the Bessel modes 
and the roots corresponding to every mode. Further, the 
field E,, has been multiplied by a factor G,, to decompose 
it into components corresponding to the nth mode and 
normalized by a factor fnm: 

1 
unm = - 

2 JJ H,& E,,G 
f 

a d6’ dz , (13) 
nnl slot 

b 
1 

nm = - 
2 JJ H,+& E,, 

G 
--!EY a d6’ dz 
f 

. (14) nm slot 
The factor G,, is given by 

G nm = 
k JA(pnm) 

(15) 

IV. THE LONGITUDINAL 
COUPLING IMPEDANCE 

The longitudinal coupling impedance Z(w) is defined 
as follows [ 1,2] : 

Z(w) = -1 q -m EZ(r = 0,B = O)e-jkz dz. J, (16) 
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Using the expressions for the wake fields derived before, 
we get 

z(w) = c g ej”omcpo;~ sin(kw) 

m m 

c Jo(Pom) 

x xc -ji$nfd a J;(Pnm) 

n m 

(17) 

In the low frequency limit, ,& = e and sin(kw) 2 
kw, and the impedance is found to be 

Z(w) 22 -3.1 
cl Zowdk 

2T2a + 
c2Zow2dk 

27r2a2 
+ .I, (18) 

where cl, c2 are constants. The second term reduces to the 
expression in [1,2] with w = d = 2R for a round hole with 
radius R, but for the constant of proportionality. 

V. RESULTS AND DISCUSSION 

Calculation of the impedance for given slot/hole di- 
mensions involves solution of Eqs.(4) and (8) for the roots 
P,, and Pnm and summing up the series in Eq.(l7) for a 
given k. Computations were carried out for various slots 
and holes for a liner radius of 0.0165 m. The impedances 
for 2-, 3-, and 4-mm holes in the frequency range O-5 GHz 
are shown in Figure 2; they are compared with the impe- 
dance Z, from [l] and also with measured data from E.Ruiz 
et al. [!?j]. The measured values are less than 2, and the 
impedances from the present computations are less than 
even the measured values. The differences are much less 
for holes of 2, 3-mm diameter. The impedances of slots 
of different depths d and same width w are shown in Fig- 
ure 3. The slot areas have been maintained the same for 
comparison. The impedance is found to decrease with the 
depth d. The behavior of the real and imaginary parts of 
the impedances Z, and Zi for 2- and 3-mm square slots for 
a range of O-60 GHz is shown in Figure 4. The impedance 
is inductive for lower frequencies, capacitive for larger fre- 
quencies, and reduces to zero for very large frequencies. 
The impedances decrease as k-’ for large frequencies, as 
shown by Eq.(17). The 2, is negative for certain frequen- 
cies ; this is due to the truncation error in the series (with 
R = 7 and m = 39) amplified by the term sin(kw). The 
advantage of t’he present formulation is that it is valid for 
a large range of frequencies and is valid for slots or holes. 
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Figure 2. Impedances for 2-, 3-, and 4-mm holes. 
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Figure 3. Impedances of slots with different’ depths. 
-10 

IO 
i 0.5 

fl \;.““‘““:’ 

6’ 6 
00 

‘:;- F 

B-05 i 
1 (1 

k vi, 

!l 
Pi, 2ximmsio, 

i 
15 

I 
10 I- T I 

1h1C. 2. ic 4.1’” 6.1” 
Frequen.y. AZ 

Figure 4. Behavior of the real and imaginary parts of the 
impedances. 
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