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Abstract 

A double RF-cavity system with a passive higher-harmonic 
cavity is considered for the purpose of preventing coupled- 
bunch instabilities and/or increasing the bunch lifetime. 
Expressions are presented for the onset of the equilib- 
rium phase instability, the frequency and damping rate of 
the Robinson instability, the synchrotron frequency, syn- 
chrotron frequency spread, and bunch length. An algo- 
rithm is presented for evaluating the performance of a pas- 
sive higher-harmonic cavity, and applied to the SRRC elec- 
tron storage ring, which is being installed. 

1 Introduction 

The performance of an electron storage ring may be lim- 
ited by coupled-bunch instabilities [l] and the Touschek 
lifetime. A passive RF cavity with resonant. frequency 
near a harmonic of the fundamental RF cavity may be 
used to increase Landau damping of synchrotron oscil- 
lations and/or increase the bunchlength [2, 31, thereby 
suppressing coupled-bunch instabilities and increasing the 
Touschek lifetime. However, unwanted side-effects such as 
the equilibrium phase and Robinson instabilities should 
be avoided. In Section 2, we present an algorithm which 
evaluates a higher harmonic cavity [4]. The algorithm is 
applied to the SRRC storage ring in Section 3. We use the 
notation of Sands [5]. 

2 Analysis algorithm 

We consider a ring with a passive higher-harmonic cav- 
ity in which the fundamental RF-cavity is operated in the 
“compensated condition” [5] with tuning angle adjusted 
so that the generator current is in phase with the volt- 
age. The following values must be input to the algorithm: 
VT~ : peak effective RF voltage in Cavity 1; Q’; : unloaded 
quality factor of Cavity 1; Ry: unloaded impedance of Cav- 
ity 1 at resonance; fl : RF-coupling coefficient for Cavity 
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1; (Y : momentum compaction; To : revolution period; 

w9 : generator angular frequency; E : electron energy; 
5’E : electron energy spread from synchrotron radiation 
emission; I : average beam current magnitude; V,: syn- 
chronous voltage; v : harmonic number of Cavity 2; Q2 
: quality factor of Cavity 2; R2 : resonant impedance of 
Cavity 2; 42 : tuning angle of Cavity 2; 7~ : longitudinal 
radiation damping time; Z(WC.B.) : parasitic impedance 
driving coupled-bunch oscillations; and WC.B. : frequency 
of the parasitic mode. 

Let WI be the resonant frequency of Cavity 1, &I = 
Qn/(l + p) the loaded quality factor, RI = Ri/(l + p) 
the impedance at resonance, and 41 the tuning angle, de- 
fined by tan41 = 2Ql(w, - WI)/W~. This tuning angle 
is the negative of that used by some authors. Robinson 
oscillations are dependent upon the additional angles #JIM 
which obey tan dlk = 2Ql(w, in Sa - wl)/wl. Cavity 2 is a 
passive higher harmonic cavity with resonant frequency w2 
near vwg where u is its harmonic number. &. is its tuning 
angle, given by tan& = 2Q2(vwg - wz)/wz. As with Cav- 
ity 1, Robinson oscillations involve additional angles &* 
which obey tan & = 2Q2(uwg & n - wz)/wa. 

Let n denote the Robinson instability angular frequency, 
a~ the instability damping rate (negative for growth), 
e > 0 the electron charge magnitude, while FL and F2 
are bunch form factors for the fundamental and harmonic 
cavities. We initially set Fl = 1 and F2 = 0.1, and iterate 
until the form factors are consistent with the bunchlength. 
Our algorithm proceeds as follows: 

1. Calculate $1, the phase angle of the bunch center, 
which equals zero for a bunch at the voltage peak: 

V, = F~VT~ cos $1 - 2IRzFl COS’ +5a 0) 

If this equation can only be solved with 1 cos $1 I> 1, 
then there is no possible equilibrium phase of the bunch in 
Cavity 1, and the calculation is discontinued. 

2. Calculate the tuning angle of Cavity 1 for operation 
in the “compensated condition” [5]: 

tan41 = 
2FlIR1 
- sin $1 

VT1 

3. Calculate the coefficients of the Taylor expansion of 
the effective synchrotron potential, U(T) = ar2 +br3 +cT~: 
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a = $$(VT~ sin41 + uIF2Rz sin2&) (3) 

b= s VT1cos+l - 2~~IF~R~cos~c$~) 
,( (4) 

c= -g(V& sin$i + u31F2R2 sin2&) (5) 
0 

4. If a is positive and c < 0.45[a/(oa~/E)]~, then the 
synchrotron confining potential is mostly quadratic. The 
synchrotron frequency, bunchlength, and spread in syn- 
chrotron frequencies obey: 

w, = t/z (6) 

C=7E 

ut = Ew, (7) 

'JW# = w,u; 1 g - (p)z 1 (8) 

Otherwise, the confining potential is mostly biquadratic 
so that the bunchlength obeys: 

ut = 0.69(9/' (9) 

where U, = $(y)2. The frequency of a synchrotron 
oscillation of amplitude ut obeys: 

W - 1.17(cuo)1’4 fit - (10) 

The most unstable frequency is 1.72~~~. 
At the dividing line between quadratic and nonquadratic 

potentials, the bunchlengths determined by the respective 
formulas are equal. 

5. Use the bunchlengths to determine the form fac- 
tors (for Gaussian bunches): Fl = exp(-wza:/2) and 
F2 = exp(-v2w$$/2). Repeat steps 1-5 if the form fac- 
tors differ greatly from the previous input values. For new 
input values, use a weighted average of the two most recent 
calculations of the form factors. After several iterations of 
steps l-5, we have quantities calculated using form factors 
which are consistent with the bunchlength. 

6. Determine if the dipole longitudinal coupled bunch 
instability is damped. For a mostly-quadratic synchrotron 
potential, the coherent frequency shift for a resonant dipole 
interaction with a longitudinal cavity mode of impedance 
z(wc.~.) at frequency wC.B. is [I]: 

1 Aw IC.B., 
e~~wc.~.Z(w.B.)F& 8, 

2ET,w, (11) 

where Fwc.=. is the bunch form factor at the frequency 

WC.B.. To account for radiation damping, subtract 7i1 
from this frequency shift. 

The resulting frequency shift may be compared with the 
calculated synchrotron frequency spread to determine if 

Landau damping is sufficient to ensure stability. A grow- 
ing dipole mode will be Landau-damped [6] when the mag- 
nitude of the coherent frequency shift is less than 0.78u,,. 
For the case of a nonquadratic synchrotron potential, eq. 
(11) may be used with the most unstable frequency 1.72w,, 
in place of w,. Landau damping is sufficient to prevent the 
coupled bunch instability [7] if the coherent frequency shift 
is less than 0.3~~~. 

7. Determine if the equilibrium phase instability will 
occur. Stability is assured if: 

FlI < 
VT~ sin $1 

RI sin 241 (12) 

8. If the previous inequality is satisfied, calculate the 
Robinson frequency: 

Q2 = z(FlV~1 sin& - 
0 

q(sin 2dr- + sin 2$1+) 

+ uR2F$Isin 242 - T(sin 2&- + sin 2&+)} (13) 

This calculation requires iteration, and one can start by 
evaluating the RHS with zero beam current, and then iter- 
ate using a weighted average of the most recently computed 
value of s1 and the previously computed value. 

9. Once the Robinson frequency is known, the Robin- 
son damping rate can be calculated; a positive value gives 
stability: 

(YR = $$[F;R~Q~ tan dr ~05~ #r+ ~0s~ &- 
0 

+ FlRzQ2 tan 42 cos2 &+ COS’ 42-1 (14) 

We evaluate a higher harmonic cavity by performing the 
above calculation for a sequence of values of ring current 
and tuning angle. In iterated calculations, the iteration is 
concluded and a flag is set if convergence does not occur 
within a reasonable number (- 500) of iterations. 

Uncertainty results from the assumption of a resonant 
coupled-bunch interaction with a parasitic mode, as well 
as the impedance and frequency of this mode. The bunch- 
length calculated in the presence of coupled-bunch insta- 
bility does not include any lengthening resulting from the 
instability. 

3 Application to the SRRC stor- 
age ring 

To test our algorithm, higher harmonic cavities at MAXlab 
and BESSY were modeled. The results were in reason- 
able agreement with experiments when we used a parasitic 
mode impedance of 0.02 M$ which is an order of magni- 
tude below a typical undamped value, consistent with the 
presence of spurious mode attenuators. 

In the 1.3 GeV storage ring being installed at SRRC, 
the beam pipe aperture and RF-frequency are nearly the 
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same as MAX-lab [8]. Thus, we expect a third harmonic 
cavity at SRRC would have similar properties to that of 
MAX-lab, so we used the MAX-lab values R2 = 0.6 MO, 
and Q2 = 10,000. For the parasitic mode driving the 
coupled bunch instability, we used a frequency 1.5 times 
the fundamental frequency, and an impedance of 0.02 MO. 
Results are shown in Fig. 1 for the case of two identi- 
cal passive cavities, which were modeled as a single cavity 
with R-J = 1.2 Ma. For a ring current of 60 mA or less, 
radiation and Landau damping are sufficient to prevent 
the coupled bunch instability in the absence of a higher 
harmonic cavity, as shown by the results for passive cavity 
tuning angles of &QO degrees. The coupled-bunch insta- 
bility can be suppressed at all currents up to the desired 
maximum current of 200 mA. Similar results were obtained 
with a single passive cavity. 
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Figure 1. Instabilities are predicted for a range of ring 
currents and passive cavity tuning angles, for the case of 
two identical third-harmonic cavities at SRRC. 
- : coupled-bunch instability 
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Figure 2: Bunchlength versus passive-cavity tuning an- 
gle for a 200 mA current at SRRC. The dashed line shows 
the results of a single third-harmonic cavity, while the solid 
line describes two third-harmonic cavities. 

In Figure 2, we consider one or two third-harmonic cav- 
ities, and show the bun&length versus the passive cavity 
tuning angle for a ring current of 200 mA. For stable op- 
eration, the bunchlength can be modified in the range of 
21-35 ps with a single passive cavity, and 18-60 ps with 
two identical third-harmonic cavities. With a single pas- 
sive cavity, a passive cavity power dissipation of 25 kW is 
required to stabilize the coupled bunch instability. With 
two passive cavities, about 10 kW per cavity must be dissi- 
pated with a tuning angle of -60 degrees. If a tuning angle 
of -48 degrees is used to maximize the bunchlength, 16 
kW per cavity must be dissipated. We estimate that the 
Touschek lifetime will be proportional to the bunchlength 
within about 10 percent. 

4 Summary 

An algorithm has been developed to evaluate instability 
behavior with a passive higher-harmonic cavity. For the 
electron storage ring at SRRC, our results support the 
feasibility of using one or two third-harmonic cavities to 
suppress coupled-bunch instabilities. Two cavities may 
be used to substantially increase the bunchlength and the 
Touschek lifetime. 
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