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Abstract the Vlasov equation[5] 

The effect of the localized longitudinal impedance is in- 
vestigated by using the Vlasov equation approach. The 
motivation is trying to explain the observed discrepancy 
between the analytical study and numerical simulation on 
the bunch lengthening phenomenon. The v, = m/21 res- 
onances are found to play a noticeable role. As another 
application of this treatment, synchro-betatron resonances 
are also recovered. 

g + g$ - -&,s,g = 0, (1) 

where $(T, 4; s) is beam distribution in phase space which 
consists of a pair of dynamical variables z and E. The 
action-angle variables (r, 4) are related to (z, 6) through 
z = T COST, E6 = rsind; C is the circumference of the 
ring, E is the beam energy, w, is the synchrotron frequency 
and 77 is the slippage factor. 

I. INTRODUCTION 

The discrepancy of the analytical theories (the pertur- 
bation techniques, in particular) and the computer sim- 
ulation on transverse coherent instability has been no- 
ticed and was successfully explained by considering the 
coherent synchro-betatron resonances due to the local- 
ized impedance[l][2][3]. When the combination of beta- 
tron tune vo and synchrotron tune v., is close to integer or 
half-integer, i.e. vp ZIZ Iv, x m/2, the predictions on the 
mode coupling by two approaches are different. The reason 
behind this is that the regular Vlasov technique treats the 
impedance as a distributed one, the wake “force” acts on 
beam all along the orbit, but a typical computer simula- 
tion treats the impedance as a localized one, the wake force 
just kicks the beam once a turn at the particular location. 

We assume the particle beam experiences a localized 
“kick” due to the interactions between the beam and the 
surroundings at the location s = 0, where s is the distance 
along the orbit. The particle energy loss in one turn is 
(here the short range wake field is assumed) 

V(z, S) = gh(s) Jm dwj(w, s)eyZi(w), 

where b(w> s) is the Fourier transform of p(z), the beam 
distribution in r-axis. 

Consider a beam with an unperturbed distribution $0 
which is executing collective oscillation due to the inter- 
action of the wake fields. Let the collective oscillation be 
described by a small distribution perturbation $Q(Y, 4; s), 
i.e. 

The same arguments may be applied to the longitu- 
dinal case in the study of the bunch lengthening phe- 
nomenon. One possibility to explain the discrepancy be- 
tween the mode analysis and tracking is tracking uses local- 
ized impedance. In this paper, we investigate the longitu- 
dinal coherent resonance effect due to the longitudinal lo- 
calized impedance by using a matrix technique[4]. For one 
simple particle distribution mode, the water-bag model, 
the resonance stopbands widths are calculated. The re- 
sults are what one would expect from the pure analysis 
side. The further studies on the tracking side is necessary, 
but are not included in this paper. Also, we extend our 
studies to the transverse case where the synchro-betatron 
resonances are re-obtained by our approach. 

!b(r, 4; s) = 40(r) + 41(r, 4; 8). (3) 

Keeping only the first order terms in $1, we get the 
linearized Vlasov equation 

co co 2x 

X 
J 

dw&w)e-?-+ 

J J 
dr’r’ d4 e I -Y’y+’ $)I = 0, 

--cm 0 0 

Here the potential well distortion effect is not included, the 
study of which is not the goal of our study. 

We consider a simple model of 40, the water-bag model 

II. THE VLASOV TECHNIQUE 

We consider a single bunch particle beam described by 

$0(r) = 
cEH(i - r), 

TW,.? 2 
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where H is the Heaviside step function. The advantage 
of using the water-bag model is avoiding introducing the 
radial mode of collective motion, but does not severely 
limit the generality of the studies. 

(2) 

--cm 

(4) 
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Observing the fact that the perturbations occur only at In the absence of the impedance, the total map T = R 
the edge of the bag, we can write the perturbation as whose eigenvalues are 

&(T, 4; S) = h(r - 2, 5 oq(s)e+. 
I=-CC 
I#0 

(6) 

Substituting Eq.(6) into Eq.(4) gives an infinite set of 
equations describing the coupled motion for all I. We single 
out the I-th component 

y + ilyll(S) - b(s) g It-,kcr,,(S) = 0, (7) 
k=-cc 

k#O 

XI = St, = e- i2rlv. 
(17) 

These correspond to the eigen modes of the unperturbed 
motion and the beam are always stable. 

In the presence of the impedance (wake filed), as the 
beam current is increased, the eigenvalues of the total ma- 
trix T are more and more perturbed. If one of them ac- 
quires an absolute value larger than one, the beam motion 
becomes unstable. 

where the matrix Zi’ has been defined by 

I& = 1 

(8) 
which has the following properties: 

Ii2 = 0, 

Without considering the coupling among the different 
modes, we keep only the I-th and the (-I)-th elements in the 
transformation matrix. The reason that it is necessary to 
keep (-I)-th terms is we must observe the property K2 = 0 
which guarantees we can use either X(0-) or X(0+) on 
the right hand side of Eq.(14). 

The simplified 2 x 2 matrix becomes 

T = (-l)m 
emiaT’* (1 + icl) ie-i2nlA E, 

-ie-i2rrlA (18) 
cr e > 

-i2nlA(l _ i,q) ’ 

where m 
A=v,---, 

21 (19) 

Ii’..+ = -&. (9) and 00 
We define an infinite dimension vector, whose I-th com- e/ = 1 

2Nqe2cC 
n2v, Ei= s 

dw ‘mz!(W> J=(G) 
W ’ 2c ’ (20) 

ponent is -cc 
X{(S) = w(s). (10) which is a real number. 

Then the Eq.(7) becomes The eigenvalues of the simplified matrix are then deter- 
mined by the secular equation 

dXl(s) ---&- +~Rdk(s)+ 6(S)c K?kXk(S) = 0, (11) X2 - 2(-l)m[cos(2aIA) + clsin(2~1A)]x + 1 = 0. (21) 
k k 

where One of the eigen values has absolute value larger than 
27rlv, one and therefore the coherent instability occurs if 

h$k = i;-6lk (12) 
Icos(27rlA) + EI sin(2rlA)l > 1. (22) 

” 

The action of the impedance is obtained by integrating 
Eq.(ll) through s = 0, so the map from s = O- to s = Ot The stopband width at the region near the resonance 
is 

x,(0+) - &(o-) = -c&x(0-). (13) 
v, = m/21 is approximately 

k 

Between the location of the impedance, the different CY,‘s 
are decoupled, the map from s = O+ to s = C- is 

1 7 d~~~~(~b,?(~),. (23) 

--m 

Xr(C-) = c slkx(o+), 

k 

where 
Sir: = e- 

i2nlv 
‘blk. 

Therefore the total map for one turn is 

(14 
For the broad band impedance (valid for a diffraction 

impedance model) 

Z//(w) = Rolf!i1’2[1 + sgn(w)i], 

(15) 
W 

the stopband width is 

T = S(I - K), T = S(I - K), (16) (16) 

Where I is the indentity matrix. The diagonal matrix R Where I is the indentity matrix. The diagonal matrix R 
describes the action between the location of impedance, describes the action between the location of impedance, 

where where 

and Zr’ describes the localized “kick”. and Zr’ describes the localized “kick”. 

sJzq1- a, r 

Svr = ?r=r2(9r(l+ j) y,’ 

I-= E!$+3p (26) 

(25) 
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FIG. 1. The longitudinal stopbands. The shaded regions 

are unstable. Resonance structures are displayed by this 
diagram. 

For SLAC SPEAR ring, E = 3GeV, v, = 0.042, Z = 
2.68cm and I = 20mA, 6~s x 0.005. 

III. TRANSVERSE CASE AND 
SYNCHRO-BETATRON RESONANCES 

We can also apply the same technique to the transverse 
case, which has been already extensively studied[ l] [2] [3]. 
Here we just give some main results. For the transverse 
motion the Vlasov equation is: 

9 a4 2 + -y--7$ - -&Vy(“, sg + yg = 0, (27) 
Y 

for which the one turn map is 

where 

and 

T = S(I - Ii), 

Sfk = e-wPwtw&k, 

(31) 

(32) 

“ii = PgT2vaE 
Ne2cC ,gm ii-k J” 

dW+(W)&($)&$. 

k#O --c4 

(33) 
This time only modes represented by cr: and CI~: con- 

tribute significantly. Keeping these two modes, we get the 
same secular equation for eigenvalues as Eq.(21) except a 
is redefined as 

a = vg + Iv, - y (34) 

and the stopband width is 

6v, = dwZf(w)J/ql. (35) 
--m 

For the broad band impedance 

z:(w) = 2 1: 13’2[Sgn(w) + i], (36) 

where the transverse dynamical variables, both the regu- 
lar and the action-angle, are y = ry cos0, -z = ry sin0, 
where wp is the betatron frequency. The localized trans- 
verse “kick” is defined by with 

where b is beam pipe radius, the stopband width is 

I/y(z, S) = -igS(S) /m dwp(w, s)eyZL(w), (28) 
-co 

where the Fourier component c(w) only comes from the 
contribution of the longitudinal distribution. 

The distribution function is assumed as: 

qr, 4; ry, 6 s> = f(ry)gJ$r - ;, s 

d2 r’(1- i) T 6J.q _. ~~- 
T2r2( $) q1+ i) v/y ’ 

eIRo i1f2C312 
T=-jj- b2 . 

r 

(37) 

(38) 

- Dy cos&(r - f, C 
p=l,-1 I=-02 

I#0 

Y? 

(29) 
FIG. 2. The transverse stopbands. The shaded regions 
are unstable. Resonance structures are displayed by this 
diagram. 
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