
Longitudinal Head-Tail Instability in a Non-Harmonic Potential Well 

Abstract 

A perturbation technique is developed that can be 
plied to study the collective instability problem when 
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quite similar. They are caused by a dependence of the ac- 

Fli 
cumulated betatron or synchrotron phase on the longitu- 
dinal position of the particle, coupled with a pert,urbation 

,,;, due to the collective wake forces. 
unperturbed system is not described by a simple harmulllL 
oscillator. The longitudinal head-tail instability effect is 
well studied as applications of this technique. Applica- 
tions of the longitudinal head-tail instability effects to the 
CERN SPS and the SSC are included. 

However, the situation is more subtle in the longitudinal 
case since longitudinal position z and 6 are the dynamic 
variables which describe the particle motion. The analysis 
of this problem is therefore more involved. 

I. INTRODUCTION 

The ideal motion of a single particle in a circular accel- 
erator is that of a simple harmonic oscillator. The con- 
ventional theory of collective instabilities is developed by 
imposing the perturbation of collective wake forces on the 
simple harmonic system. 

Consider a circular accelerator whose slippage factor 17 
contains a higher order term in 6, i.e., 9 = 7/0(1 + $cS), 
where 90 is the leading contribution of the momentum slip- 
page factor, and 6 is a parameter that specifies the strength 
of the higher order contribution. The unperturbed equa- 
tions of motion of a single particle are given by 

However, when the new collective longitudinal insta- 
bility was observed in the CERN SPS[l], the analyses 
suggested the “longitudinal chromaticity” playing a role. 
Drawing analogy to the transverse case where the beta- 
tron chromaticity causes the head-tail instability, this new 
instability was named longitudinal head-tail (LHT) insta- 
bility. The theoretical existence of the LHT instability was 
pointed out by Hereward[2]; ‘t 1 results from the non-simple- 
harmonic nature of the system when the longitudinal chro- 
maticity effect is considered. To study the LHT instability, 
the conventional theory does not suffice because it treats 
only the simple-harmonic case. 

dz 

ds= 

where s is the longitudinal coordinate along the accelera- 
tor circumference, and w, is the unperturbed synchrotron 
oscillation frequency for small amplitudes. 

The coefficient c describes the deviation from the simple 
harmonicity of the system. We consider small c so that 
If61 < 1. The motion of single particle in the z-6 space 
follows a constant Hamiltonian contour. One such contour 
is shown in Fig. 1. 

In this paper we develop a new formalism that extends 
the conventional approach to the non-simple-harmonic 
Hamiltonian system. The LHT instability is studied as 
an application to demonstrate the technique. By using 
the water-bag particle distribution model, it is possible to 
solve the problem exactly and obtain the growth rates for 
the various collective modes (the dipole, quadrupole, sex- 
tupole modes, etc). Although not discussed below, the 
potent’ial-well distortion, as well as its effects on collective 
instabilities, can also be studied with this technique. 

FIG. 1. The phase space trajectory due to the non-simple- 
harmonic Hamiltonian. The case shown is for 6 > 0. 

II. MECHANISM OF THE LONGITUDINAL 
HEAD-TAIL INSTABILITY 

The LHT instability, like its well-known transverse coun- 
terpart, the transverse head-tail instability, is a single 
bunch effect. The mechanisms of these instabilities are 

The main effect of a non-vanishing t is that it has in- 
troduced an asymmetry between the upper and the lower 
halves of the phase plane. As the beam bunch executes its 
dipole oscillation in this deformed phase space, the shape 
of the phase space area occupied by the bunch varies, al- 
though its area is conserved. The bunch shape at two 
instances (marked by + and -) are shown as shaded ar- 
eas in Fig.1. In particular, the bunch lengths i+ and ?- 
at the two instances are related by the Liouville theorem 
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according to 

i- I%-I 4(1++5-) l-& I+& 
Ty=Ig+l= 6+(1+ $6,) 

M-M- 
1+ 660 l+c6+’ 

(2) 
where 60 = a/lq~j, and 5k x &So - $66: are the values 
of 5 at the + and - locations. We conclude from Eq.(2) 
that, to first order in 1c601, the bunch length is modulated 
according to 

where the function f(p) represents a small deviation of 
the system from simple harmonicity, particularly for the 
system described by Eq.( 1) for which f(p) = -;;‘;;p. and 
VI is the retarding wake voltage per turn induced by $1 and 
is related to the longitudinai impedance Z!(w) according 
to 

iKl1$-& (3) 
as the bunch executes the dipole oscillation in the phase 
space. Next we introduce the effect of the collective wake 
fields. Since the energy loss of the beam bunch depends on 
the bunch length, the bunch energy loss is also modulated 
by the same factor of Eq.(3). Adding the energy loss term 
to h.(l), 

IfI = & J 
M ~o~~(w)ei~Q/” J Da dq’e-w’l” -a3 J Oc dph(q’,p), --ccl -co 

(8) 
Here the potential-well distortion effect,, which is not of 
interest in the present study, has been ignored. In writing 
down Eq.(8), we have also ignored multi-turn wake effects. 

We now introduce new canonical variables (Q, Ho), 
where 

d6 3 i dAcb 

z a ?jocz2 + %YGEdE ’ (4) 

where nr is number of particles per bunch, E is the particle 
energy, C is machine circumference, and AE is the bunch 
energy loss per turn(in our convention, A& < 0). we have 
kept only its leading contribution to first order in 6. 

The new equations of motion represent a system with 
growth (or damping if negative) rate: 

’ &(Ho P’> Q = -J dH; dp’. 
0 

(9) 

The advantage of using Ho as dynamical variable lies in 
the fact that $0 depends on Ho only. 

Notice the period of the motion of a particle is Q, = 
$ wdp’. This period depends on the value of Ho for 
the particle under consideration. 

ci dAE 
7 --1= .f-------- 

2NEC d.5 

Considering $1 is a small quantity, we use the new vari- 
ables to obtain the linearized Vlasov equation by keeping 
the first order terms in $1, 

(5) 

The Eq.(5) was first obtained in Ref.[l]. 

III. PERTURBATION APPROACH 

From the previous section we knew that to study 
the LHT instability, we will have to consider an un- 
perturbed system which is described by a non-simple- 
harmonic Hamiltonian. For such a system, the conven- 
tional method of using polar coordinates(the action-angel 
variables) no longer applies. The technique we develop in 
this paper is to introduce a new pair of dynamical variables: 
the Hamiltonian H itself and another variable Q which as- 
sumes the role of the time variable. The advantage of using 
the new variables is we only need to deal with one compli- 
cated variable Q. This point will become clear in the later 
derivation. Having introduced the new dynamical vari- 
ables, the procedure we use to solve the Vlasov equation 
then follows basically the conventional treatment. 

We start with a general situation when the accelerator 
is described by a Hamiltonian H(q, p; s). The beam distri- 
bution is given by 

$(q, P; s) = $o(Ho) + Ill(q,p)eminsic. (6) 

The unperturbed system, $0 must be a function of unper- 
turbed Ho = $p’[l + f(p)] + gq2 alone. 

H(q,p; s) = ~p2[l+f(p)]+~q2-z 1 V~(q’)dq’e-i”S’c, 

--cc 
(7) 

.a 6% a$o ~HO 
- z;Th + -@ + g$(q)m&- = 0. (10) 

To solve the Vlasov equation, we first Fourier expand $1 
as 

(11) 

where the 1 = 0 term in the summation is to be excluded 
because it violates the total charge conservation for a given 
HO. The Fourier expansion is possible because the motion 
is periodic in Q with period a,. 

For the l-th mode (for example, I= 1 corresponds to the 
dipole mode), 

b- +$$-2~(H0)+i~~;;;;~~) 7 da&w) 

@(Ho) 

X J ~~ ~~ exp ,i~q~Q~~oll dQ-- 

x j&A T’dQ’rxp [-,ws(v; H6)] 
0 

x 2 z(Hh)exp [i2rl’& - i&r/&] = O. 
I’=-00 

(12) 
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For a general equilibrium distribution $0 (Gaussian, for 
example), the analysis to solve Eq.(12) is involved. Pur- 
suing along this line would yield the radial modes of the 
collective oscillation. For one simple beam distribution, 
the water-bag model, however, the radial modes degener- 
ate and the equation can be solved analytically. In the 
following, we will assume that the unperturbed beam has 
a water-bag distribution 

$o(Ho) = . 
N 

;Q(Ho)dHo 

O(ri -Ho), 

0 

(13) 

where 0 is the step function. fi = w,2i2/8c2. 
Since any perturbation of a water-bag distribution has 

to occur around the edge of the bag, we have 

R,( Ho) 0: S( Ho - I?). (14 

After adopting the water-bag model, Eq.( 12) can be sim- 
plified. Also, the coupling among the different modes with 
I’ # I are neglected. The validity of this approximation as- 
sume the mode frequency shifts are small compared with 
2irc/Q 73 w,. 

We further define an angular variable B according to 

q = .2J2Hocose, p i- Lp= JZZsine. 
W d------ 

(15) 
s 70 

In terms of the new variable 0, Eq.(12) can be written 
as 

fp) _ Iw, _ i qoNe2c2 O” 
<G> ~I~~ECLU’,~ < G > J dwZi (1 

-m 

2A 

X J dt?‘G(Q’) exp 

0 

= 0. 

where 
(16) 

2rr 

<G>=$ J G(WQ, G(P) = 
0 

If the non-harmonicity is weak, we assume ]cd2G/901 < 1 
and keep the first order terms in E to obtain the mode 
frequency 

d’) = lw, + i (18) 

where 

2 
-02 

B = -32a2c2/2 O” dw~~~~,(~)~,+l(~)+(l-l)~~(~) $2 J 
-03 

(19) 
A is purely imaginary and B is real. If c = 0, only the 

,4 coefficient plays a role; the result describes the solution 
of the conventional longitudinal instability problem. In 
particular, the fact that A is purely imaginary means the 
mode frequency Q is real, and the beam is always stable. 
This is a well-known result[5][6] when mode coupling and 
multi-turn effects are ignored, as is presently assumed. If 
c # 0, the B term also contributes to the mode frequency 
s2. This contribution, being imaginary, is the cause of the 
LHT instability. The instability growth rate is 

-1 4Ne2c2 O” 
7, = E-l2 

TECH _ I 
dznez~~~~)[rJi(z)iiii(r)+(l-I)J:(~)] 

--cc 
(20) 

For the case 1 = 1, we can recover the result given by 
the simple physical picture. Eq.(5) applies to dipole mode 
only, while Eq.(20) is valid for arbitrary I 

For the CERN SPS collider, we estimate that[7] the 
growth time 7 is 5.4 s for the diffraction broad band 
impedance model. The observed growth rate is 5 - 6 
s[l]. For SSCL machines, LEB, MEB, HEB and collider, 
the growth time are found to be 7.0 x lo* s, 3.4 x lo3 s, 32 
s and 1.2 s, respectively. 

The LHT instabilities tend to play a more important role 
in the lower energy accelerators, particularly those oper- 
ated close to transition. In all cases studied, however, the 
LHT instability does not constitute a serious limit on beam 
intensities. 
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