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INTRODUCTION 

A longitudinal, single bunch instability has been ob- 
served in the SLC damping rings.[l] Beyond a threshold 
current of 3 x lOlo the energy spread of the beam increases 
and a “saw-tooth instability” appears. The latter term is 
meant to describe a rather complicated phenomenon, de- 
pending on both current and rf voltage. In one form it 
describes a cycle that includes a quick increase in bunch 
length, over a time on the order of a synchrotron period, 
and then a much slower return to the original length, over 
a t,ime on the order of a radiation damping time. Although 
the total relative change in length is only about 10% the 
resulting unpredictability of the beam properties in the 
rest of the SLC accelerator makes it difficult, if not im- 
possible, to operate the SLC above the threshold current. 
With the goal of trying to understand this instability the 
simulations that are the subject of this paper were begun. 

Bunch lengthening calculations have been performed 
before for the SLC damping rings, to obtain the average 
bunch shape as function of current .[2] The wakefields of all 
the import,ant vacuum chamber components were first ob- 
tained numerically.[3] The dominant elements were found 
t,o be many small discontinuities-bellows, masks, transi- 
tions, etc.-elements that are inductive to the beam. Once 
the total wakefield had been obtained, and the thresh- 
old current was known (from measurements), the average 
bunch shapes were found by means of a potential well cal- 
culation. The bunch shapes obtained in this way were 
found to agree very well with measurement results.[4] 

In this paper we investigate the single bunch behavior 
of the SLC damping rings using time domain tracking and 
also a Vlasov Equation approach. Since the earlier bunch 
length calculations the damping ring vacuum chamber has 
been modified, by sleeving the bellows. Our results will, 
therefore, include the effects of this modification. 

PHASE SPACE TRACKING 

The Formalism 

We use a now standard tracking method for simulat- 
ing the effect of the wakefield on the longitudinal phase 
space of the beam.[5-91 The beam is represented by Np 
macro-particles; each particle i has position and energy 
coordinates (zi, Ei), with a more negative value of .z more 
toward the front of the bunch. The properties of particle 
i are advanced on each turn according to the equations: 

At-i = - y + 2c,o 
J- 

$)ri + V’fzi + Knd(Zi) (1) 

AZi = %(cj + Aci) , (2) 

with TO the revolution period, r, the damping time, 0~0 the 
nominal rms energy spread, Vi, the slope of the rf voltage 
(a negative quantity), (Y the momentum compaction factor, 
*Work supported by Department of Energy contract DE- 
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and Eo the machine energy; pi is a random number ob- 
tained from a normally distributed set with mean 0 and 
rms 1; the induced voltage on any turn is given by 

I 

E&(z) = -T?N J W(z - z’)X,(z’) dz’ , (3) 

with N the bunch popil;tion, 1?v(z) the Green fun&on 
wakefield, and A2 (2) t,he longitudinal charge distribution. 
We approximate Robinson damping of dipole oscillations 
by adding -~To(E)/ rd on the right of Eq. (l), with E the 
average energy and Td the Robinson damping time. 6 ii 

Practical Considerations 

Simulations use only a small fraction of the real num- 
ber of particles in the beam, and numerical noise can sup- 
press real phenomena or generate it,s own phenomena. This 
is particularly true with an inductive impedance, such as 
the SLC damping rings’, since then the induced voltage 
depends strongly on the slope of the charge dist,ribution. 
To calculate X, on each turn we simply bin the macro- 
particles in z, without smoothing, and count on t,he use of 
a very large number of macro-particles to give us a suffi- 
ciently smooth distribution. 

The wakefield for the ring with bellows sleeves wa.s cal- 
culated as before, using the computer program TBCI,[lO] 
with a short, gaussian driving bunch with (T, = 1 mm. 
To make it causal, the part in front of bunch center (at 
z = 0) was reflected to the back (see Fig. 1). We expect 
to be able to find beam instabilities down to wavelengths 
of about 1 cm. 
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Fig. 1. The Green function wake used to repre- 
sent the current SLC damping rings. 

For the simulations we take TO = 118 ns, Eo = 
1.15 GeV, rf frequency ~~1 = 714 MHz, C,O = 0.07%. We 
choose a peak rf voltage V,, = 0.8 MV, where the nominal 
bunch length U,O = 4.95 mm, and synchrotron frequency 
V,O = 99 kHz. For practical reasons 7E was reduced by a 
factor of 10 to 0.17 ms. Therefore there are 1445 turns 
per damping time, compared to 85 turns per synchrotron 
period. We take Np = 300,000, and for calculating X, we 
take 100 bins to extend over loo-, of the bunch. We start 
the program with the potential well bunch distribution and 
let it run for 3 damping times. 
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SIMULATION RESULTS 

Average Bunch Properties 

On each turn we calculate the lower moments of the 
distributions. By averaging over the last damping time 
we obtain the “average” properties of the distributions. 
Fig. 2a displays the average value of the first (the crosses) 
and the second (the diamonds) moments in z as functions 
of current. The ring being inductive, the bunch shapes 
are more bulbous than gaussians, and the bunch length 
increases with current. 

In Ref. 2 the average bunch shapes are obtained by a 
modified potential well solution: Hdissinski’s formula [ll] 
is used to find the bunch shape; above threshold the energy 
spread, and therefore the natural bunch length used in 
the formula, are taken to increase as N1i3 (since the ring 
is very inductive). This method applied to the current 
damping ring, taking the threshold to be 2 x lOlo, are 
shown by the lines in Fig. 2. This approximate method 
agrees very well with the tracking results. We should also 
point out the bunch length for the ring is very similar to 
that of the old ring, only 10% shorter at 3 x lOI*. 
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Fig. 2. Average bunch properties vs N. 

The Threshold Current 

In Fig. 2b we plot the average rms energy spread as 
function of current. Fitting the results to a power law 
increase above a threshold we find the power law to be 0.28 
and the threshold Nth = 2.0 x lOlo. A confirmation that 
this is the threshold current is the fact that the unstable 
mode (discussed below) first a 

B an uncertainty of -0.25 x lo1 . 
pears at this current, with 

P.B. Wilson once hypothesized that one criterion for 
the onset of the instability is that the slope of the total volt- 
age (V:r + I$,) goes to zero within the bunch.[l2] In our 
case this criterion holds at 1.9 x 10”; at higher currents, 
as the bunch lengthens, it continues to hold. A related hy- 
pothesis by P.B. Wilson is that the Haissinski Equation, a 
transcendental equation of the form X, = f(AL), will, when 
iterated above threshold, asymptotically give two, alter- 
nating solutions.[l3] I n our case this begins at 2 x lOlo. 

Repeating the tracking calculation for the old ring (no 
bellow sleeves) we find a threshold of 1.1 x 10”; repeating 

it for a wakefield that represents only the rf cavities (the 
best impedance we can imagine) we obtain a capacitive 
wakefield and threshold of 14 x lOlo. 

Modes of Instability 

Taking a Fourier transform (FT) of one of the mo- 
ments we find that, beginning at N = 2 x lOi*, resonances 
appear with frequencies above 2.4~~. Taking the FT(s,) 
at 3.5 x lo’*, with s, the skew in .z (see Fig. 3a), we find 
a very clean signal with only one, very narrow peak (see 
Fig. 4a). The full width, 1.5%, is given by the limited 
length of the run and not by any more fundamental limit. 
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Fif. 3. The turn-by-turn skew when N = 3.5 x 
10 * (a), and the rms when N = 5.0 x 1O1* (b). 
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Fig. 4. The absolute value of the Fourier trans- 
form of the skew signal for two currents. 

At some currents, like 5.0 x lOlo, we find a fairly reg- 
ular overshoot pattern in the moments as function of time 
(see Fig. 3b). In th’ 
5% over a cycle: 

is example the bunch length varies by 
the lengthening time is about 1.5/~,s, the 

shortening time is maybe twice as long. In the FT we see 
an extra peak at 22 kHz and sidebands around the insta- 
bility. At N = 3.0 x 10” the pattern of the bunch length 
is more irregular. 

Fig. 5 gives two snapshots of the unstable mode when 
N = 3.5 x lOlo. We see that the maximum amplitude of 
the mode is about 10% and the wavelength about 1.2 cm. 
We obtain a 3-dimensional mode plot by averaging the dis- 
tributions at a fixed phase in the oscillation and subtract- 
ing from this the average over all phases (see Fig. 6). We 
see that the mode is a mixture of dipole, quadrupole, and 
sextupole components. By 5 x 10” an octupole component 
can also be seen. 
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Fig. 5. A snapshot of the beam, at two phases 
180’ apart, when N = 3.5 x lOlo. 
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Fig. 6. The shape of the unstable mode from two 
views at N = 3.5 x lOlo. 

The positions of the major peaks in the spectrum of 
the skew signal for different currents is shown in Fig. 7. 
The diamonds show the cases with one narrow spike in the 
spectrum of s,, the crosses those with more complicated 
spectra. We see that the frequency of the unstable mode 
increases with N; the dashed line has a slope of 0.27/101*. 
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Fig. 7. The positions of the major peaks in the 
Fourier transform of the skew signal us N. 

A Vlasov Equation Calculation 

K. Oide and K. Yokoya have written a computer pro- 
gram to solve the time independent, linearized Vlasov 
Equation including the effects of potential well distor- 
tion.[14] Using the wakefield of Fig. 1 we take 6 azimuthal 
space harmonics and 60 mesh points in amplitude to rep- 
resent phase space. We find that, due to the potential 
well distortion, already by 1 x 10” the large gaps in mode 
frequencies have disappeared. The first unstable mode is 
found at 1.9 x 1O1* with a frequency of 2.5~~0 (see Fig. 8). 
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Fig. 8. A contour plot of the unstable mode, 
obtained by solving the Vlasov Equation. 

COMPARISON WITH MEASUREMENTS[~ ,4] 

The agreement with measurements of t’he average 
bunch shapes is very good. The calculated threshold cur- 
rents are about 30% lower than the measurements, which 
are 3.0 x 10” in the current ring, 1.5 x 1O1* in the old ring. 
A mode (sometimes call the “sextupole” mode) has been 
measured above threshold. At 3 x 10” it has a frequency 
2.6~~0; at higher 
0.08/1010, 

currents the frequency increases at about 
a much lower slope than calculated here. 
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