
Computation of Longitudinal Bunched Beam Instability Thresholds 

R. Baartman 
TRIUMF, 4004 We&rook Mall, Vancouver, B.(:. V6T ‘LAS, (Canada 

and 
M. D’yachkov 

Physics Department, IJniversity of British (:olurrll~ia, 
6224 Agricultural Road, Vancouver: B.(1. V6T lZI, (Canada 

A h.sll?I~l 

An integral equat,ion derived from the linearized Vlasov 
quat,ion has been used t,o find the instability t,hresholds in 
the case of space-charge impedance alone for various distri- 
hut,ion funct,ions. It has been found that the thresholds for 
the inst,al)ility which are caused by the coupling between 
nr = fl azirrruthal modes may be obtained analytically for 
n~any practically used distributions. Moreover, the crite- 
rion drterrnining these thresholds appears to be the same 
as tlhatj for t~hresholds beyond which no stationary distri- 
hut,ion can be found. 

I. INTR(.)DlJ( :TION 

It, has been found that in the case of broad-hand 
or space-charge impedance the stationary distribut,ion 
changes significantly with intensity, and t#his should be 
t,aken into account because the stability thresholds calcu- 
lat,ed ignoring potential well distortion differ from those 
oht~aincd in self-consistentj calculations [2]. Therefore, the 
results ol)t,ained previously [4] under the assumption of ab- 
scnre of incoherent, frequency spread have to be considered 
critically. However: these results provide us with a clear 
picture of the physics of t,hr instability and can he used for 
checking any other new thfaory. 

It. has herri shown in ref. 4 that the problern of tleter- 
mining die 311 = *l tjliresholds (as well as others caused 
by &rn coupling) in the absence of synchrotron frequency 
spreatl can 1)~ formulat,ed as an eigenvalue problem for the 
Fourier cornponent,s of the line density. Moreover, ana- 
lyt,ical expressions for matrix elements for some specific 
distributions have been found [4]. 

II. INTE(:RAL EQIJATION 

Wr, norlnalize the longitudinal coortlinat,e (I such t,hat, 
thaw Hatrlilt.onian of the particle is 

H(P, (I) = $ + V(q), (1) 

where p is t,lie longitudinal momentum and V(p) is a po- 
tent,ial which we assume to be symmetric. 

In the case of space-charge impedance, the self-force is 
proport,ional t,o the derivative of the line drnsit,y and we 
also can define an intensity parameter I so that, 

Fs(- = -1: and V = I/o + IX(q), (‘L) 
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where X(q) is the line density. I may have either sign: for 
space-charge it, is positive below transition and negative 
above. 

The Vlasov equation can he written in terms of p an (1, 
or, more conveniently, in action-angle variables as 

. 
!?$+$j+~.i=o, 

where j = -i)H/i38 antI ri = iiH/i)J. 
It cm he shown that the st.at ionary distribution ipll is it 

function of J only. We tlierrf0re look for a solut.ion in the 
form p = ~/jo(J)+4’,l(.J,t),t), where 7/:1 is a small pert,url)a- 
tion. The Harniltonian of the system can then be written 
as 

H(J, 0. 1) = Ho(J) + I X,(,y(J, O), f), (4) 

where X1 (q> t) = S Q1 dp. Droppin, fl terms of srco~~tl or- 
der and t#aking into account, t)hat) rlHo/tlJ = u(J). t.he 
linearized Vlasov equation becomes 

!$ +&(J) $ _ 1% $! = 0. 
(5) 

It t,urns out, t,o be iIlore convenient, to take li,,, ;LII~ w t,r, III> 
a funct,ions of c = H(p, (I) instead of J: 

$Jt) z F = 1 J!?? 

w(J) dJ (6) 

We look for a solution in the form $1 = fpUt (and X1 = 
SC”‘) Then with the definition (1(t) = ~//W(C), WP get, 

$lf+$ - I&+ = 0 

The periodic solut,ion f(t, 0) = f(t, 0 + 2~) is 

f(t\s) = I$” 1 / 
Of277 

pn-8’) h 
i3H’dQ’. (8) 

n 

Note that although this result is formally equivalent1 t,o 
that given hy Krinsky and Wang [:3, eqn. :3.1X], it differs 
in the sense that the present, treatment, is a perturbation 
about the stationary case which includes the space-charge 
impedance: in ref. :I, the dationary induced potjential is 
ignored. 
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lnt,egrating eqn. 8 hy p&s we get, 

j-(f) 0) = ~llxJ(Og((l) - wy2r:2e 1 s t?+2r 
cri~o-8’)g(y’)de’. (9) 

8 

Integrating eqn. 9 over the momentum and taking into ac- 
count t,lid y(q) = S f(t , Q)dp, we have finally 

g(y) [l - fA’(V)] = (10) 

s 
r-L 8-+2rr I 4Jli~b(~) IL s $xi1 - 1 B p(Wg(q~)~Q , -w 

whrrr A’(V) = dA/dV, and 

h(V)=J;Z ~ 
.I 

w $)(t)dc 
v vc-v 

is an auxiliary function for @o(H) which we introduced 
previously [I] in connrct,ion with finding stationary didri- 
butions. 

EC~II. I1 is non-linear with respect t,o 1) and therefore is 
riot easy t,o solve in general. In the special case v + 0, 
however. we have the simple result 

g(y) [l - rA’(v)] = -- jS_:‘~~(~)~~~‘g!Yl)‘(R’. (12) 

The I/ - 0 limit can be thought, of as coupling between rtnl 
azimut~hal modes [4]. Since the dipole mode nl = f 1 is the 
lowest, orclcr antisymmetric eigenmotle y(y) = -y(-q), the 
integral in eqn. 12 vanishes and we find 

g(y) [l - rA’(V)] = 0. (13) 

III. R;IOL)E-(.:OIJf’LIN(: THEORY 

A tlif~errnt method to det~ermine t~hrrsholtls of longitucli- 
nal bunched beam stability in the presence of space-charge 
was used in ref. 4. The thresholds corresponding to cou- 
pling brt,ween fnt azimuthal modes can be formulated as 
an eigenvalur problem for the Fouric>r conlponents of the 
line tlensit,y. To compare the two techniques we have cho- 
sen t,lirl faIrlily of did,rihut,ions defined hy 

d’O(O = & - [l - CY( 1 - t)] P-t 

This family is vr’ry convenient, l~ccausr it, contains both 
the ‘gaussian’ (c, = 0) and ‘hollow-gaussian’ ((1 = 1) cases, 
arid hecause the matrix elcment,s of the eigenvalue problem 
can be fuuntl analytically. The eigenvalue problem can he 
writ,tcii in the form 

rx 
pgk = c Hkl !I/ > 

1=-C.- 

where g(y) = xgkczkq and t.hP mat,rix elements are 

lfk, = -$g [I - In(M)] 

(15) 

(16) 

-- 
& { 

-y [I - j”(k!l)] +/cl [I - f,(kl)]}. 
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Figure 1: Extreme eigenvalues of eq,,. 15 (plotted as scpam) a~1 
extreme values of A’( L’) (solid liues). 

Here T7,L(~) = c-’ 1,,1(~) is the exponentially scald rnotli- 
fied Bessel function. The lowest thresholds can be found 
from t,lie condition G Ith = 1, where 1: are the extreme 
eigenvalues (of either sign). 

In comparison, we have from eqn. 13 that 1 -A/r/) It), = 
0. With $0 given by eqn. 14, the expression for A(V) is 

A(V) = (1 - ; + Ct v) E-I’ 

Sirnple analysis allows us to obtain the following expres- 
sions for extreme values of A’(V) for differentS parameters 
cr. 

1 

-I+$ ifO<(r< f 
A’(V),;, = 

-crexp(k--) if$<o< 1 

(18) 

A’( qnax = 

1 

0 ifO<cu<$ 

-1++ if { < 0 < 1 

.A. 
Therefore, if 011~ plots i; and A’(V) vs. <r on the same 
graph, the two curves should be the same. In order t,o solve 
numerically qn. 15, the matrix was truncated at, 40 x 40. 
Minimum and maximum eigenvalues obtained in this case .A. 
are the plotted points in Fig. 1. The solid lines are A’(V) 
(18). We can see that the results are in good agreement. 

IV. SELF-CC)KSISTENT (.!ASE 

The results discussed in the previous section have heen 
obtained assuming no incoherent synchrotron frecluency 
spread (i.e. V C-X y’). To satisfy this c.ondition in the self- 
consistent case, the initial potential well should be 

I/o = I’ + I [A(O) - A(V)] \ (19) 

where V = y2/2, and A(V) 1s g iven by eqn. 1 I. The net- 
essary Vo(q) to get a self-consistent stationary phase space 
distribution with V(q) = q2/2 for t,he ‘hollow-gaussian’ 
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Figure 2: Vo vs. (I at threshold intensities for the ‘lmllow-gaussian’ 
~listribution. b’ = q*/2 is slmwn by the dashed curve. 

distribut~ion $0 = TV-’ at threshold intensities are shown 
in Fig. 2. The upper curve shows Vo(q) at the positive mass 
thrrsl~old and t,he bott~orn one at, the negatiac ~I~U.S.S thresh- 
old. As one can see tShese shaps are far from ‘sinusoidal 
or ‘harmonic’. 

Realist,ically, of course, vo is harmonic and V(q) is dis- 
t,ort,ed by space-charge. In this case we can find the thresh- 
olds beyond which no stationary distribution exists [l]. 
Surprisingly, the stationarity criterion found in ref. I is 
the same as we obt’ained for thresholds corresponding to 
rn = fl mode-coupling! This means that in the case when 
Lb is a harmonic potential, 71) = fl modes do not couple. 

It, is necessary to mention that, this crit,erion is valid for 
any l/,,(q) for which dVo/d(q2) # 0 (i.e. no local minima). 
This analysis can be extended to the case when V”(q) is 
not. syrrmletric. I:nfort,rmat,ely, in this case we can’t use the 
sytIItuetSry of the eigenfunctions to determine t.he thresh- 
olds as has been done earlier in this paper. Numerical so- 
lution of the integral equat,ion is required. This has been 
done for several cases of $0 and the results are consistent 
with the salne threshold, namely IA’(V) = 1. However, no 
formal proof of t,he universalit8y of this criterion has been 
found. 

V. (:ONC:LI:SION 

A sinlple criterion for t,he thresholds given by vanishing 
0f the real part’ of the eigenfrequency (c01lpling bet,ween 
71) = *l azimut,hal modes) for the bunched beam in the 
rase of space-charge impedance has been derived from the 
linearized Vlasov equation. The thresholds obtained from 
t)his criterion have been found to be in good agreement with 
the thresholds obtained by the mode-coupling method for 
the family of distributions which includes ‘gaussian’ and 
‘hollowgaussian’ cases. Th e method described in ref.4 
neglects t,he potential well distortion and the incoherent 
synchrot,ron frequency spread caused by nonlinear space- 
charge forces. It has been found that when the potential 
can I)r approximat,ed by a parabolic one r/;l = q2/2 (or, in 

general, when dV”(q’)/rl(q”) > 0), coupling between 111 = 
&I modes cannot occur for any stationary distribution. 

We also can make a conclusion about the shape of the 
eigenfunction g(q) at threshold: since the threshold cond- 
tion (13) is satisfied in general at only one specific point 
qth, g(q) can be non-zero only at qth. indeed, recovering g 
from the eigenfunction {gk} corresponding t,o p,, = ,2 [4], 

we find a very sharp peak at the point where Iti, L4;ii/) = I 
and almost zero elsewhere, and the peak becomes sharper 
with increasing order of the matrix used in eqn. 15. 
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