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Abstract

An integral equation derived from the linearized Vlasov
equation has been used to find the instability thresholds in
the case of space-charge impedance alone for various distri-
bution functions. It has been found that the thresholds for
the instability which are caused by the coupling between
m = %1 azimuthal modes may be obtained analytically for
many practically used distributions. Moreover, the crite-
rion determining these thresholds appears to be the same
as that for thresholds beyond which no stationary distri-
bution can bhe found.

I. INTRODUCTION

that in the case of broad-band
or space-charge impedance the stationary distribution
changes significantly with intensity, and this should be
taken into account because the stability thresholds calcu-
lated ignoring potential well distortion differ from those
obtained in self-consistent calculations [2]. Therefore, the
results obtained previously [4] under the assumption of ab-
sence of incoherent frequency spread have to be considered
critically. However, these results provide us with a clear
picture of the physics of the instability and can be used for
checking any other new theory.

It has been shown in ref.4 that the problem of deter-
mining the m = %1 thresholds (as well as others caused
by £m coupling) in the absence of synchrotron frequency
spread can be formulated as an eigenvalue problem for the
Fourier components of the line density. Moreover, ana-
lytical expressions for matrix elements for some specific
distributions have been found [4].

II. INTEGRAL EQUATION

It has been found

We normalize the longitudinal coordinate ¢ such that
the Hamniltonian of the particle is
2

Hip.g) =5+ V), (1)

where p 1s the longitudinal momentum and V(g) is a po-
tential which we assume to be symmetric.

In the case of space-charge impedance, the self-force is
proportional to the derivative of the line density and we
also can define an intensity parameter [ so that
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where A(g) is the line density. [ may have either sign: for
space-charge it is positive below transition and negative
above.

The Vlasov equation can be written in terms of p an ¢,
or, more conveniently, in action-angle variables as
oy . o

0+ —J =0,
* aJ
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where J = —)H /38 and 6 = 9H /O] .

It can be shown that the stationary distribution v 1s a
function of J only. We therefore look for a solution in the
form p = wo(J)+ 41 (J,0,t), where ¢ is a small perturba-
tion. The Hamiltonian of the system can then be written
as

H(J,0.t) = Ho(J) + 1 \i(q(J.0), 1), (4)

where A1(g,t) = [1dp. Dropping terms of second or-
der and taking into account that dHg/dJ = w(J). the
linearized Vlasov equation becomes
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[t turns out to be more convenient to take 1y and w to be
a functions of ¢ = H(p, ¢) instead of J:

sz Wo_ 1 dyo ;
We look for a solution in the form ¥, = fe*' (and A} =
ge¥?) Then with the definition Q(¢) = v/w(¢), we get
! af N .
$2f+5§—11/)0(()06—0. (7)

The periodic solution f(¢,0) = f(¢,0 + 27) is

, P (¢ 2
fle,8) = 1-—%(:2-; /
8

Note that although this result is formally equivalent to
that given by Krinsky and Wang [3, eqn. 3.18], it differs
in the sense that the present treatment is a perturbation
about the stationary case which includes the space-charge
impedance: 1 ref.3, the stationary induced potential is
ignored.
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Integrating eqn. 8 by parts we get

F(e,8) = Ig(e)g(q)
Iy Q otz Q8-8"Y ¢ 1\ g/
_ [L)O(é)w:—l , € g(q )dg . (9)

Integrating eqn. 9 over the momentum and taking into ac-
count that g(¢) = [ f(¢, 8)dp, we have finally

glg) [L - IA'(V)] = (10)
™ ' Y s Q8-8") ¢ 1\ 1n!
! dp?/’D(() a2 | / € g(q )d9 )
- : - 8
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where A’/(V) = dA/dV, and

is an auxiliary function for vp{H) which we introduced

previously [1] in connection with finding stationary distri-
butions.

(1)

Eqn. 1 is non-linear with respect to v and therefore is
not easy to solve in general. In the special case v — 0,
however, we have the simple result

sl = v === [y [Cate ()

The v — 0 limit can be thought of as coupling between £m
azimuthal modes [4]. Since the dipole mode m = %1 is the
lowest order antisymmetric eigenmode g(¢) = —g(—q), the
integral in eqn. 12 vanishes and we find

g(q)[1 - IA' (V)] = 0.
I, MODE-COUPLING THEORY

(13)

A different method to determine thresholds of longitudi-
nal bunched beam stability in the presence of space-charge
was used in ref.4. The thresholds corresponding to cou-
pling between £m azimuthal modes can be formulated as
an eigenvalue problem for the Fourier components of the
line density. To compare the two techniques we have cho-
sen the family of distributions defined by

l/’()(f) =

M—a(l —¢)]e" (14)

|
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This family is very convenient because it contains both
the ‘gaussian’ (« = 0) and ‘hollow-gaussian’ (o = 1) cases,
and because the matrix elements of the eigenvalue problem
can be found analytically. The eigenvalue problem can be
written in the form

(8.8
Wk = Z Herge,

l=— o

(15)

where ¢(¢q) = Zykeik" and the matrix elements are
l—o

2T
1% K2+ 02 - -
- {_ . [1_hwm+wm1—uwm}.

Hy = -

[t = Io(kD)] (16)
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Figure 1: Extreme eigenvalues of eqn.15 (plotted as squares) and
extreme values of A’/(V) (solid lines).

Here i,,l(z) = e7*I,,(2) is the exponentially scaled modi-
fied Bessel function. The lowest thresholds can be found
from the condition ji fy, = 1, where g are the extreme
eigenvalues (of either sign).

In comparison, we have from eqn. 13 that l—A;a’) Iy =
0. With %o given by eqn. 14, the expression for A(V) is

A(V) = (1—?+av) eV (17)

2
Simple analysis allows us to obtain the following expres-
sions for extreme values of A’(V') for different parameters
.

-—l+%a if0<cx<§
N Vmin =
—aexp(%—%) if%<a<l
(18)
0 if0<a<?
A,(V)max =
—1+2a if 2<a<l

e

Therefore, if one plots ji and A/(V) vs.
graph, the two curves should be the same. In order to solve
numerically eqn. 15, the matrix was truncated at 40 x 40.
Minimum and maximum eigenvalues obtained in this case

v on the same

are the plotted points in Fig.!. The solid lines are A'(V)
(18). We can see that the results are in good agreement.

[V. SELF-CONSISTENT CASE

The results discussed in the previous section have been
obtained assuming no incoherent synchrotron frequency
spread (i.e. V o ¢?). To satisfy this condition in the self-
consistent case, the initial potential well should be

Vo=V + IA(0) = A(V)]. (19)

where V = ¢?/2, and A(V) is given by eqn. 11. The nec-
essary Vo(q) to get a self-consistent stationary phase space
distribution with V(q) = ¢?/2 for the ‘hollow-gaussian’
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Figure 2: V5 vs. ¢ at threshold intensities for the ‘hollow-gaussian’
distribution. V = ¢?/2 is shown by the dashed curve.

distribution ¥y = ¢e~¢ at threshold intensities are shown
in Fig. 2. The upper curve shows Vy(q) at the positive mass
threshold and the bottom one at the negative mass thresh-
old. As one can see these shapes are far from ‘sinusoidal’
or ‘harmonic’.

Realistically, of course, V4 is harmonic and V(q) is dis-
torted by space-charge. In this case we can find the thresh-
olds beyond which no stationary distribution exists [1].
Surprisingly, the stationarity criterion found in ref.1 is
the same as we obtained for thresholds corresponding to
m = £1 mode-coupling! This reans that in the case when
Vo 1s a harmonic potential, m = £1 modes do not couple.

It is necessary to mention that this criterion is valid for
any Vo(q) for which dVy/d(¢?) # 0 (i.e. no local minima).
This analysis can be extended to the case when Vj(q) is
not symimetric. Unfortunately, in this case we can’t use the
symumetry of the eigenfunctions to determine the thresh-
olds as has been done earlier in this paper. Numerical so-
lution of the integral equation is required. This has been
done for several cases of 93y and the results are consistent
with the sarne threshold, namely 7A’(V) = 1. However, no
formal proof of the universality of this criterion has been
found.

V. CONCLUSION

A simple criterion for the thresholds given by vanishing
of the real part of the eigenfrequency (coupling between
m = x| azimuthal modes) for the bunched beam in the
case of space-charge impedance has been derived from the
hinearized Vlasov equation. The thresholds obtained from
this criterion have been found to be in good agreement with
the thresholds obtained by the mode-coupling method for
the family of distributions which includes ‘gaussian’ and
‘hollow-gaussian’ cases. The method described in ref. 4
neglects the potential well distortion and the incoherent
synchrotron frequency spread caused by nonlinear space-
charge forces. It has been found that when the potential
can be approximated by a parabolic one V5 = ¢2/2 (or, in

general, when dV;(¢?)/d(g%) > 0), coupling between m =
41 modes cannot occur for any stationary distribution.

We also can make a conclusion about the shape of the
eigenfunction g(¢) at threshold: since the threshold condi-
tion (13) is satisfied in general at only one specific point
gths 9(9) can be non-zero only at q. Indeed, recovering ¢
from the eigenfunction {g+} corresponding to u, = i [4],
we find a very sharp peak at the point where Iy, A’/(V) = |
and almost zero elsewhere, and the peak becomes sharper
with increasing order of the matrix used in eqn. 15.
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