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Abstract 

A new analysis of the bunch lengthening instability, based 
on a single synchrotron mode in a distorted potential well, 
is presented. The nonlinearity of the wakefield plays a crit- 
ical role: It distorts the equilibrium density from its Gaus- 
sian shape, which results in asymmetric corrections to the 
Sacherer equation. This modified equation will have unsta- 
ble eigenmodes when the beam current reaches a threshold 
value. The calculated threshold agrees very well with our 
multiparticle simulation for SPEAR parameters [l]. 

I. INTRODUCTION 

The performance of modern synchrotron light sources and 
circular colliders relies on sustaining very short bunches 
of high peak currents. The bunch lengthening instability, 
i.e., the sudden increase of both the bunch length and the 
energy spread at some threshold current, is a serious con- 
cern. Much theoretical work has been aimed at explaining 
this phenomenon [2]. Most notably, mode coupling theory 
assumes that low order synchrotron modes couple together 
at the bunch lengthening threshold. However, there is no 
cogent evidence from experiments that this has actually oc- 
curred. In this paper, we investigate the instability mech- 
anism within a particular synchrotron mode in a distorted 
potential well. 

II. LONGITUDINAL DYNAMICS AND 

EQUILIBRIUM 

The mapping for the longitudinal motion in a ring is [3]: 

Tn+1 = 7, - LYT06n+1, (1) 

wakefield loss 
6 = &a+ 

w20To 
ntl Am - 

Eo 
> (2) a 

where r,, is the arrival time relative to the synchronous 
particle in the nth turn, 6, is its relative energy error, 
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Q the momentum compaction factor of the ring, TO the 
revolution time, w,a the synchrotron oscillation frequency 
and EO the beam energy. 

Since the synchrotron tune is small for most rings and 
the wakefield loss is distributed throughout the ring, we 
can then approximate the mapping by the differential 
equations: 

d6 2 
w*o LF(T). 

dt = --? - EoTo 

Here F(T) is the wakefield loss of the particle: 

/ 

too 
F(T) = Ne*Lo dr’p(+)W(r’ - r). (5) 

7 

Eq. 5 involves integrating the wake left by all other charges 
in front of the particle under consideration. N is the num- 
ber of particles in the bunch, LO the ring circumference, p 
the particle density of the bunch and W the longitudinal 
wake function [4]. 

If we identify T as the coordinate and 6 the momentum, 
then Eqs. 3 and 4 are the dynamic equations of a harmonic 
oscillator under the influence of the additional force F(r). 
The Hamiltonian of this system is: 

H= 
’ 

dr’F(r’). (6) 

For electron machines, synchrotron radiation of electrons 
and its quantum nature provide damping and diffusion 
in phase space. The resulting equilibrium state will be 
a Boltzmann distribution: 

where 660, the equilibrium energy spread, is determined by 
balancing the radiation damping and the diffusion caused 
by quantum excitation. 

It is very useful to observe that, while the wakefield can 
change the particle distribution in r, it cannot change the 
distribution in 6. It will always be a Gaussian distribu- 
tion with constant energy spread. Experiments show that 
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the energy spread increases after the current reaches some 
threshold value. In our simulations, we also observe that 
the distribution in 6 starts to develop a non-Gaussian de- 
formation at the threshold. All these suggest that the equi- 
librium is unstable as the current reaches the threshold. 

III. SACHERER EQUATION 

We follow the Vlasov-Sacherer [5] approach to investigate 
the stability of the equilibrium. The phase space distribu- 
tion function, $(r, 5, t), satisfies: 

w CP w,“lJ w 
dt- 

eF(r) ‘w * z’yraa---=. 
EoTo 86 63) 

To int,roduce the concept of a synchrotron mode, we first 
neglect the wakefield, i.e., we consider the zero current 
limit. In polar coordinates, T = rcos 4, c~6/w,c = r sin 4 
and the Vlasov equation reduces to 

(9) 

Thus, the equilibrium distribution, Ja, depends only on P. 
The eigenmodes of the time dependent solutions are 

$J = RI(r) exp(il4 - in(%), 

with eigenvalues 

(10) 

Q(‘) = lw,o, I= 0, fl, f2, *. . . (11) 

These are called synchrotron modes. 
When the current is not zero, different 1 modes are cou- 

pled together by the wakefield. We know from most experi- 
ments and simulations that low synchrotron modes are still 
well separated even when the current reaches the threshold. 
So we assume the coupling between different synchrotron 
modes is not critical for the bunch lengthening instability 
and we will neglect mode coupling henceforth. 

Next we keep only the linear term in Fo(T): 

FO(T) = Fe(O) + FT + O(T2). (12) 

Here the subscript denotes the wakefield loss from the equi- 
librium particle density distribution. It is easy to see that 
all the wakefield effects on the zeroth order Vlasov equa- 
tion can be incorporated into an incoherent synchrotron 
frequency shift 

wzo ---) wi[l - 
cre dF0 

-13 EoTow,20 d7 (13) 

and a shift of the center of the bunch: 

r-+#=7-To, (14) 

Thus, $0 is still a function of r: 

If we project the first order Vlasov equation 

ati1 ah -- 
dt+W” a#J -e,,$g = 0, 

EoTo 
(17) 

into a particular synchrotron mode, we obtain the Sacherer 
equation: 

(St-/w,)&(r) = -&$/v / r’dr’CI(r,r’)&(d). (18) 

Here, the kernel 

Gl(r, r’) = / daFJi(wr)JI(wr’), (19) 

is determined by the imaginary part of the impedance 
Z(w). Since G/ is real and symmetric, there are only real 
eigenvalues. The single mode Sacherer equation does not 
provide the instability mechanism we are looking for. 

IV. IMPROVED SACHERER EQUATION 

The discussion above suggests that it is crucial to keep 
the nonlinear terms in the wakefield loss F(s). The most 
important consequence is that the wakefield effects cannot 
be completely incorporated into the incoherent frequency 
shift and the shift of the center of the bunch. Although +,, 
is still Gaussian in 5, it is no longer Gaussian in T. Because 
of this non-Gaussian deformation, (Ito is a function of both 
r and d: vb(r,4). 

From Eq. 17, the (p dependence of $0 will generate cor- 
rection terms to the right hand side of the Sacherer equa- 
tion. Generally, they are not symmetric operators. Since 
the 4 dependence in the equilibrium is at least linear in the 
current, the correction terms to the Sacherer equation are 
proportional to the square of the current. The improved 
Sacherer equation will look like: 

(0 - lwd)&(r) = I x symmetric operator on RI 

+ Z2 X asymmetric operator on 4. (20) 
When the current I is small, we don’t expect the asymmet- 
ric perturbation to be big enough to push the eigenvalues of 
the symmetric Sacherer operator into the complex plane. 
When Z reaches some critical value, we expect that this 
will happen and then the system goes unstable. 

V. PARAMETERIZATION OF THE 

EQUILIBRIUM 

In order to find the corrections to the Sacherer equation, 
we need to know the functional form of $e(r,#). To ac- 
complish this, Fourier expand $0: 

rlo(r, 4) = fo(r) t !I(?) cos 4 + f2(r) ~09 24 + . . . . (21) (15) 
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We will det.ermine fo(r), fi(r), . . . by the following scheme: and the functions g are related to functions f by 
The equilibrium density distribution is determined by 

Haissinski [S] equation: h(r) = T$- (fn+l(r> - fn-l(r)). (34) 
T 

aeL0 

J 

4-m 

> 

The difference between the approximated distribution and 

W~o~o~~o 0 
wt + +7(t) I the numerically obtained distribution is very small for the 

(22) 
where g(2) is given by: 

J 

t 
g(t) = dt’W(t’). (23) 

0 

SPEAR parameters. For other impedances and equilib- 
rium bunch lengths, the model expansion Eq. 24 may not 
be valid. The fundamental point is unchanged: nonlinear- 
ity of the wakefield loss leads to instability. 

We can solve this equation numerically and compute the 
first four cummulants of the particle density distribution 
p(r): r0, average 7; bT, standard deviation; 71, normalized 
skew moment; yz, normalized excess moment. Then we 
approximate the equilibrium by a cummulant expansion. 
Denote E = (r - rc)/a+, , 

p(r) = [l + Z(za 
6 

- 3~) + $x4 - 6t2 t 3)]n(x). (24) 

Here n(x) is the standardized Gaussian distribution: 

X2 

n(x) = Au7 exp(--,). (25) 

Based on this approximated distribution, we have only 
the following five non-zero terms: fc, h, f2, f3, f4: 

(26) 

(27) 

(28) 

(29) 

f4(r) = $$f00(r)$. (30) 
r 

Here 

f00(r) = 
Q 

- exp(- 
27rw,a,2 $1. (31) 

T 
We are now in a position to write down the explicit form 

of the improved Sacherer equation: 

Ne2 p(r) (Q - iw,)R,(r) = - - 
EOTO r J 

r’dr’G,(r, r’)R,(r’) 

+ $$$ 2 gn(r) / r’dr’G’~“)(r, r’)Rl(r’). (32) 
n-2 

Here, the asymmetric kernels are given by 

tin) = k jdwZ(w) (Jh(wr) - (-l)“Ji+n(wr)) J&r’), 

(33) 

v I. RESULTS AND CONCLUSION 

We have calculated the threshold current for SPEAR pa- 
rameters. Since we are most interested in the insta- 
bility mechanism behind the bunch lengthening, we lin- 
earized the RF bucket and neglected the multi-turn wake- 
field. Rather than comparing the calculated threshold 
current with experimental results, we compared it with 
our multiparticle simulation. Approximating the SPEAR 
impedance by a Q = 1 resonator, the simulation gives a 
threshold current of around 45 mA. Our calculation gives 
50 mA. The first unstable modes in our calculation are the 
dipole mode and quadrupole mode. In the experiment, 
the quadrupole mode is observed to be the first unstable 
synchrotron mode. 

In summary, we investigated the bunch lengthening in- 
stability of an uncoupled synchrotron mode in a distorted 
potential well. Without the nonlinearity of the wakefield, 
the Sacberer equation does not have an unstable eigen- 
mode. The nonlinearity of the wakefield gives asymmet- 
ric correction terms to the Sacherer equation. The im- 
proved Sacherer equation is unstable when the beam cur- 
rent reaches a threshold value. Linear theory gives a 
threshold current very close to the simulation result and 
identifies the same unstable mode as seen in the experi- 
ment. Future work includes extending the comparison to 
other rings and impedances and taking into account the 
nonlinearity of the RF bucket. 
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