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Abstract 

Time domain solutions for a coasting beam interacting 
with a longitudinal or transverse impedance are presented. 
The treatment is limited to first order perturbation theory, 
but it includes Landau damping. 

I. INTRODUCTION 

Analytic treatments of the linearized Vlasov equation are 
usually posed as eigenvalue problems in the frequency do- 
main [l, 2, 31, while computer codes usually work in the 
time domain. In this note, a time domain approach to 
the linearized Vlasov equation is introduced. The tech- 
nique is applied to both longitudinal and transverse coast- 
ing beam instabilities. In both cases, the Vlasov equation 
is reduced to a one dimensional Volterra equation of the 
second kind. Analytic solutions for specialized distribu- 
tions are presented. The solutions are easily expressed in 
simple functions, allowing for detailed analytic scrutiny, as 
well as making them easy to include in computer code. 
The following two sections focus on the longitudinal case. 
The transverse case is presented in section IV. 

II. THEORETICAL DEVELOPMENT 

For a coasting beam with self forces due to a longitudinal 
wake potential, the Vlasov equation reads 

a+te, 6, t) 
+ W”( 1 - 175) 

w(e, 44 
at ae 

+ i wJ(e, 674 
as 

= 0. (1) 

In equation (I), 19 is t,he azimuth around the machine, wg 
is the angular revolution frequency for the ideal particle, 
6 = np/p,, is the fractional momentum deviation, q is the 
frequency slip factor, and $(0,S,t)cW&5 is the number of 
particles in d0 x d6 at time t. 

The effect of the wake potential is contained in 6. In the 
smooth approximation: 

‘x2 
6(8, 1) = -&;- I w(T)I(e, t - r)dr, (2) 

0 
-m 

where q is the charge on a single particle, R is the machine 
radius, W(r) is the wake potential as a function of time 

‘\v,,r~k suppcrted II\ I’S Ilt ,I,: 

lag, and I(@, 1) is th e b earn current as a function of azimuth 
and time. 

As usual, assume that the phase space distribution is 
given by an unperturbed piece, plus a small perturba- 
tion. In the limit of first order perturbation theory, the 
azimuthal harmonics are orthogonal and may be studied 
individually: 

$(e, 6, t) = 7jo(S) + $, (6, t)eince - “Ot). (3) 

It is assumed that the wake force due to $0 vanishes. Then, 
the wake force is soley due to the perturbation current. 
This force is given by 

+m 
8=----.-e q2wf1 in(e - w,,t) 
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where, 

-32 

(4) 
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t%(t) = 
J 

tin (6,l)dS. (5) 
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The T dependence of pn (t - r) in the wake force is ignored. 
This is the only approximation to first order perturbation 
theory. It assumes that the wake potential decays before 
ill changes appreciably. 

Expressing equation (4) in terms of the longitudinal 
impedance 2, the first order solution of equation (1) sat- 
isfies 

WL (6, t) = at inwnqW,(6, t) + q+,, (t), (6) 

R(6) = 
q54, d$o(6) 

- -Z(nw,r). 
27rRpc, d6 

Equation (6) is easily solved using exp(-inw,,V6t) as an 
integrating factor, 

tin (6, t) = J!ln (6, O)e’nwfJ~st 

+ R(6) /~~(s)e~~~~‘@ - ‘Ids, 
J 

(8) 
0 

Before proceeding with the solution, introduce the total 
number of particles in the ring Nr and the characteristic 
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half width of the momentum distribution u via 

$fl(q = gf(6/a). 

Integrating both sides of equation (8) over 6 and switch- 
ing to the dimensionless time variable T = ]n]nawe~ results 
in 

pn(T) = S(T) - ip ST 
rrti (, ~n(s)G(r - s)ds, (lo) 

G(T) = T 
s 

= f(x)e iw(vb~x, (11) 
--‘u 

(12) 

In equation (lo), S(r) is th e source function and is given by 
the integral, over 6, of the first term on the right of equa- 
tion (8). For reasonable distributions, G(T) is a smooth 
function that varies over length scales of order unity, and 
has a maximum value of order unity. For the correct choice 
of u, ]Z,:ri, ] is the Keil-Schnell limiting impedance [l]. The 
actual stability of the system can be strongly affected by 
the phase of the impedance as well [3]. 

III. EXACT SOLUTION 

An exact solution to equation (10) may be obtained if the 
unperturbed distribution is a Lorentzian, 

f(x) = l 7r(l + x’) 

where E = 6/a. The response function is 

G(r) zz. T-Z - ITI. (14) 

Since T 2 0 in our problem, the absolute value sign is not 
needed. To solve equation (lo), proceed by defining the 
auxiliary variables 

Q(T) = 
6 eSpn (s)ds, 
0 

i?(T) = 1 sesP,(+k 

(1 

p,2(T) = e - T&, 

p = Tci, (15) 

where dot denotes differentiation with respect to r, and 
the second two lines follow from the first two. 

Plugging in to equation (10) with equations (14) 
and (15) gives 

&= SeT+X”(TcY-p). (16) 

The effect of the impedance is fully contained in the con- 
stant 

A2 = p4~ 
Zcrit 

(17) 

Differentiating equation (16) with respect to T and using 
the last line of (15) gives 

ki - X2a = &[S(T)2. (18) 

The boundary conditions at T = 0 are cy = 0, and ir = S(0). 
For an initial perturbation that is a Lorentzian, 

S(T) = See - y (19) 

where c = *--ize. The width of the perturbation in 6 is a?, 
and the perturbation is centered at 6 = sgn(n)uz,,. Since 
the right hand side of equation (18) is an exponential, a(~) 

is readily obtained. I consider the non-degenerate case, so 
Q! is a sum of exponential functions. Using the third line 
of (15) gives p,, (T), 

P,,(T) = (1 _ ;51: _ x2 (1 - c)‘e -‘T 
1 

- XevT [A cosh(/\r) + (1 - e) sinh()tr)] 
1 

(20) 

The motion is stable if and only if ]R(x)] 2 1. Changing 
the momentum variable to z = sgn(n)6/c, and evaluating 
equation (8) yields, 

iZT 

lJn(t, T) = +- { $ + (f- z(3)2 

- iA2(1::2)2[(I-e;--xz] ’ 1 (21) 

where 

F = (l-d2 

(e + it) 

l-e-(C+it)T 1 
x (1+X-e) - - 
2 (1 - x + iz) 1 

l _ e - (1 - x + iL)7. 1 
+ X(1-A-e) 

Z(l+x+iz) [ 

1 - e - (1+ A + iJ)T . (22) 
I 

As required, equations (20) and (21) are invariant under 
the substitition X -+ -X. 

If the system is unstable, the distribution at large T is 
given by 

ht(~, T) = 
Cze-(l-X)’ 

(1 - A + iz)(l + k2)2’ (23) 

where C is a constant that depends on the initial conditions 
and I have taken 9?(X) > 1. Equation (23) is the unstable 
eigenvector one gets from a frequency domain treatment 
as may be verified by substitution into (6) with the appro- 
priate change of variables. As one expects, the stability of 
the system is determined by the eigenvectors. 
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IV. TRANSVERSE CASE 

The solution for a coasting beam subject to a transverse 
impedance is very analogous to the treatment for the longi- 
tudinal impedance, but the treatment is more cumbersome 
due to the extra phase space dimensions. 

Let z be the transverse coordinate and w, be the aver- 
age betatron frequency. Define T as the amplitude of the 
betratron oscillation and let d be the angle variable. Then 

dd 
iii = w,r + Aw,(r, a), 

where ST(t) is the transverse source function. For the case 
Aw, = 6Q’wo, with Lorentzians for momentum distribu- 
tions, the equations may be solved. 

Define the dimensionless variables z = sgn(Q’ - nn)a/u 
and T = tuwO]Q - nnj.The unperturbed distribution is 
given by, $o(r,6) = To(r)/(l + t’), and the perturbation 
at t = 0 is $r(r,6,0) = C~{(r)@./[+’ + (Z - z(1)‘]. The 
dipole moment of the beam is given by 

D(T) = s” 

(1 _ E)e - e7- - Xe(X - 1)’ 

1-x-e (34) 

dr sin +Fs 

z = YW.7 ’ 
(25) where A = A/(cw”IQ - nn]), and E = + + iz~. The per- 

turbed distribution is given by, 

C!i+F 7 
z 

2iymw,. ’ (26) d%(r) - izT 1CIL(br,T) = Cd+e I 
r? 

CP + (2. - zo)2 
where Aw,(r, 6) is the amplitude and momentum depen- 
dent part of the betatron frequency, F,, is the transverse 
force due to the beam offset combined with the transverse 
impedance, y is the Lorentz factor of the beam and m is 
the particle mass. The approximation (26) is equivalent to 
assuming that the bctatron tune shift is small compared 
to the betatron tune. 

Assume a solution of the form, 

L 

XF 

+ 1 (l+L2)(1-X-e) ’ (35) 
l-t 

F = -~ 
[ 

1 __ e - (t - iz)r 
c - iz 1 

x 
+ 1 __ e(X - 1 + iz)7 

X-l+iz I 
. (36) 

$(r, 6,0,4, t) = yhl(r, F)+~I (r, F, t)ei[+ - wTt + n(e - w”t)l. 

(27) 
By ignoring the variation in $1 over the time scale for the 
transverse wake potential to decay, the transverse force is 
given by, 

F,(d,t) = GPZl (y -+ wJ)D(t) &qe - wot) - w,t] 
2?rR 

&I 
where /3 is the velocity in units of the speed of light and, 

D(i) = xqwi, 

J 
r’drdh$l(~, 6, t), (29) 

is the dipole moment of the beam. 
The first order Vlasov equation is given by, 

V. CONCLUSIONS 

Two exact solutions to the initial value problem for the 
Vlasov equation have been presented. Using fairly simple 
numerical techniques, solutions for a broad range of mo- 
mentum distributions could be obtained. These solutions 
might be useful in the development of computer codes, es- 
pecially when trying to determine the effect of the granu- 
larity produced by particle tracking. Additionally, the sim- 
plicity of the solutions may allow for a serious study of the 
analytic properties of Landau damping. Finally, since mo- 
mentum distributions in real machines can be measured, 
a relatively simple comparison of theory and experiment 
might be possible. 

WI ---IX 
at 
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+ QPZI( nwtI + w.r)D(t) ati,, 
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Using the same techniques as in the longitudinal case, the 
Vlasov equation can be reduced to an integral equation for 
the dipole moment, 
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