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The evolution of the density distribution is governed by 
the Vlasov equation: 

Abstract 

The theory of RF noise-induced diffusion is reconsidered 
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to account for the coherent nature of the noise, when all 
particle are affected by the same random force. The re- The statistical properties of the fluctuating quantity f are 

sulting small-scale spatial fluctuations (“microstructure”) appropriately defined by the ensemble average of the dis- 

of the beam density are analyzed. The power spectrum of tribution function: 

the fluctuations is calculated. 
f(P, 99 0 = (f(P, Q> f)){{} (4) 

I. INTRODUCTION 

The theory of the longitudinal density diffusion due to RF 
noise was studied by several authors /2-51. That analy- 
sis however ignored the fact that all the particles in the 
bunch(es) are affected by the same realization of the ran- 
dom force (what can be termed a coherent random driv- 
ing). Instead, a conventional Brownian motion problem, 
with statistically independent forces for different particles, 
was considered. In the present paper, we derive the condi- 
tion when this substitution is justified in the zero-order ap- 
proximation. We investigate as well the first order effect, 
which turns out to be the formation of the “microstruc- 
ture”, i.e. the short-wavelength spatial fluctuations, of the 
beam density. More details of the calculations can be found 

and the correlation function of the density fluctuations in 
the adjacent phase space points: 

- - 
K(P, Q, P, Q, t) = 

((f(P, Q1 t) - f(P, Q1 O)(f(P, 4, t) - f(ii, (I, W){{, (5) 

We limit ourselves with considering only the same-time 
correlator 1-C and study therefore only the spatial, but not 
the time, correlation properties of the fluctuations. 

The further analysis will be using the action-angle vari- 
ables J, @ of the unperturbed (h(q) = 0) Hamiltonian (l), 
which will be assumed to be known. The perturbed Hamil- 
tonian H in these variables has the form: 

H = Ho(J) + V(J, ‘@)t(t) (6) 
in /6/. 

II. MODEL. 

where V(J,\k) = h(q(J,Q)) and Ho(J) are known func- 
tions. 

We consider the general form of the Hamiltonian of non- III. EVOLUTION EQUATIONS. 

linear oscillator with a random driving: 
Both the average density f and the correlator Ii are evolv- 

H = f + g(q) + h(qK(t) (1) 
ing in time. We will derive the evolution equations for both 
quantities using basically the conventional techniques of 
the theory of stochastic differential equations /l/. It had 

where g(q) is an arbitrary nonlinear potential and t(t) is, been shown previously /2-4/ that the evolution of the av- 
for simplicity yet without loss of generality, chosen to be erage density obeys t;ie Fokker-Planck equation. The evo- 
the white noise, i.e. lution of the density fluctuations however has never been 

(I) = S(i - 2’) 
studied. 

(2) In the action-angle variables, the mean and the correla- - - 
*Operated by the Universities Research Association, Inc. under tor are given by: f = f(J, \k, t) and IC = K(J, rk, J, q,t). 
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notations for the phase space coordinates (1) = zri = - - 
(J, Q) and (2) = z2i = (J,\E). Taking the differentially 
small time increment At, one obtains the derivatives of 
the average density: 

am W(l) - = djf30 At at (7) 

and the correlator: 

dK - = dim0 -& ((Af(l)f(2)) + (f(lWf(2)) at -+ 
+Pf(Wf(W - f(WfW) - 
-fPWfW - tAfOWf(2))) 03) 

where the increment of the density Af = f(t + At) - f(t) 
can be expressed, due to the conservation of the phase- 
space density, as 

1 @f Af= $Axi+ssAxiAxk (9) i i 

The increments of the phase-space variables Axi in time 
At can be obtained from the stochastic equations of mo- 
tion. The second order terms in Ax were kept because 
of the properties of the white noise, where the average of 
quadratic terms Az;Axj produces a linear in At terms. 

The evolution equation for f after the substitution of the 
averages in equation (8) that can be calculated by standard 
techiques from the relation (9) and equations of motion, 
becomes the conventional Fokker-Plank equation: 
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where V = V(J, Q). For the correlator I<, one obtains an 
evolution equation that is coupled to the mean fi 
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- - 
where v = V(J, q). 

On the long time scale, or similarly in the small noise 
/ fast oscillations regime, one can average the depen- 
dence of all quantities along the unperturbed trajectories 
J = const, 9 = w(J)t. This approximation is well known 
under the name of “averaging of fast-oscillating variables” 
in the theory of Fokker-Plank equations (see, e.g. /l/). It 
was also implemented in the previous studies of the aver- 
age density diffusion in the papers /2-4/. The resulting 
averaged Fokker-Plank equation becomes the well known 
diffusion equation, /2-4/ 

(12) 

where the diffusion intensity DJ is given by: 

DJ(J) = ((AJ)) = ~~“IKxl” (13) 
n 

where V, are the harmonic amplitudes in the Fourier ex- 
pansion of V in the 27r periodic variable Q. For the corre- 
lator the phase-averaged evolution equation is: 

$ = (w(J)- W(J)) g+ & (D,(J)%)+ (14) 

+$ (DJ(~)$) + (D*(J) + h(J)) $ 

g 
> 

6% 
+ Fe(J, &)- 

ap2 

where we introduced the phase difference ‘p = Q - 6 and 
the functions DJ, De, FJ, Fe are: 

DJ(J) = ~+i,l” 

n 

Du = 
av, 2 4-l n aJ 

FJ(J, J, ‘p) = x n2Vn(J)v-,(J)einyr (15) 
n 

Fe (J, j, ‘p) = c a;;J) “-f) einv 

n 

IV. ASYMPTOTIC SOLUTION. 

In the absence of noise, the solution of equation (14) is 
trivial as only the first term in the r.h.s. survives, The 
correlation “decay” or rather decohere due to the phase- 
mixing as K(t) = C, IC,(l)ei(m~+mw(‘)*) where K,(I) 
are the Fourier amplitudes. For nonzero but small noise 

: 
- V2 the time scale of decoherence r - l/Xa (where 

f) 
= $- and c is the r.m.s. value of J for the distribution 
is much shorter than difffusion time scale rd - z. Fur- 

thermore, the correlation “injection”, that is prov:ded by 
the inhomogeneous term in (14), varies only on the slow 
time scale. As a result, one has a quasistationary equilib- 
rium correlation density that is the balance between the 
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slowly changing “injection” of correlations and their fast 
decay. 

To analyze the quasistationary solution, we drop the 
time derivative of K in equation (14). Another simplifi- 
cation comes from noticing that the correlator ZC is the 
largest at a small spatial scale q = J - J, where the “deco- 
herence” term (first term in the r.h.s. of equation (14)) is 
small. Expanding all the coefficients in the equation (14) 
to the leading order in q and keeping only the dominant 
derivatives in 4 yields: 

AqE 
d2K 

afP 
+2D,~3p+~R,e’“~=O (16) 

n 

where the quantities X = w, DJ = OJ(,Z) and R, = 

n21v,(J)j2 (qq’ depend on J as a parameter. For the 
nonzero harmonics of K in cp one obtains: 

inXqK, + ~DJ- aq2 + 8, = 0 

For the power spectrum of the fluctuations I?,, = 
& J-“, dq L(de ikq the resulting equation is of the first 
order: 

nA 6% 
- - DJk2&, + R,,b(k) = 0 ak (18) 

and allows an explicit solution: 

g(k) = 
{ 

$5 exp (%k3) ft;f;w;eo (19) 
This is the central result of our analysis. The “correlation 

radius “ qC is qc - D 
(l-4 

l/3 

3nX . For small noise/large nonlin- 
earity the “correlations radius” is small, which corresponds 
to the short-wavelength fluctuations (“microstructure”) of 
the beam density. 

A special feature of the spectrum (19) is its disconinuity. 
It is easy to see that this discontinuity is the manifestation 
of the long - l/q “tail” of the correlator I(. Indeed, for 
large q << qc the second term in equation (17) becomes 
much smaller than the first, and one obtains l/q tail. It is 
possible to obtain a more general expression for the “tail” 
q > qc not limited by the condition q << J by keeping 
the same terms of the primary evolution equation(14) (i.e. 
the first term in the r.h.s. and the inhomogeneous term) 
without expanding in q. The resulting expression for the 
correlator “tail” is: 

- - 
ZC”(J, J, f) = iK(J)V;(J) af(J,i) f(J,t) 

n(u( J) - w(J)) 77 (20) 

The most important quantity characterising the fluctua- 
tions is their intensity, which is the value of the correlator 
Ii: at q = 0, and can be calculated by integrating the spec- 
trum Z?,. The resulting intensities P,, = K,(O) are: 

Thus, the fluctuations intensities are of the order P,, - 

(?da2’3 and will be small for small noise /large nonlinear- 
ity. 

V. CONCLUSIONS. 

We presented the evolution equation formalism for the cor- 
relation function of the density dist,ribution fluctuations 
in the nonlinear oscillator under the influnce of “coher- 
ent” (same for all particles) noise. For the weak noise/ 
large nonlinearity of oscillations the fluctuations are small 
and short-ranged. The mechanism of the loss of correla- 
tions is related to the “decoherence” of oscillations due to 
amplitude-dependent frequency of oscillations, and since 
it is not a regular dissipative mechanism, the correlations 
demonstrate a long - l/q tail in the energy difference. 
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