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Abstract 
A new method to generate the general multipole rep- 

resentation of the three dimensional static field, electric 
or magnetic, is obtained via a scalar potential evaluated 
from the arbitrary specified source. As an application of 
this formulation, a previously described 3-D electric field 
decomposition method has been further generalized to the 
magnetic field. 

1. INTRODUCTION 
Representing an arbitrary three-dimensional vector field 

requires enormous amount of information. Multipole ex- 
pansion is the natural and efficient way of representing a 
field with symmetry. A good example is the field from a 
quadrupole magnet which consists of a large quadrupole 
component with relatively small fringe fields. Then the 
multipole expansion converges rapidly and from the sym- 
metry of the magnet geometry it can be easily seen that 
certain multipoles does not occur. 

For a static field, electric or magnetic, the Green’s func- 
tion is well known, and the multipole coefficients can be 
determined from the source of the field. For a electrostatic 
problems the potential at the electrode is usually given and 
the charge density can be obtained by the capacity matrix 
technique[l] without solving for the field everywhere. For 
the magnetostatic problem, the current source is usually 
given. 

In this report general multipole decomposition method 
for the static vacuum field from an arbitrary source is pre- 
sented. In section II, the multipole expansion of the field is 
defined and the method of generating its coefficients from 
the Green’s function is described. Section III shows t,he 
result from its application to a simple magnet geometry. 
A summary and conclusion is given in Sec. IV. 

2. MULTIPOLE EXPANSION 
Static vacuum fields, electric or magnetic, can be repre- 

sented by a scalar potential. The scalar potential can be 
expressed in terms of multipoles which exploit the polar 
symmetry of the system. The convergence of the expan- 
sion depends on the system of interest, however, most of 
simple designs such as quadrupoles or sextupoles have a 
single dominant component in addition to the many small 
other multipole terms. Then the field can be accurately 
represented by keeping a few leading terms. 
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The multipole coefficients M~J(z) of the potential 4 are 
defined in cylindrical coordinates system by 

w co 
4(P, 0, z) = c c bfk,f(t) Pk cos (10) (1) 

k=O I=0 

for the system of up-down symmetry. No r-axis expan- 
sion is performed and .fi!fk,l(r) is calculated at numerous 
locations in 2. 

The source-free vacuum potential 4 satisfies the Laplace 
equation (0’4 = 0) and thus the ,Wk,, observe the follow- 
ing recursion relation: 

Ml,,/ = M;-,,,/(P - k2), (2) 

where double prime denotes the second derivative with re- 
spect to Z. In order for 4 be analytic near the origin, 
the relation k 2 1 2 0 and k - 1 = even must be true 
for non-zero coefficients. The entire ensemble of multi- 
pole coefficients can then be determined from MI,/ and its 
r-derivatives. 

Since the field can be determined from the Green’s func- 
tion which is analytic away from the source, it is possible 
to decompose the Green’s function into multipoles and t,he 
total multipole coefficients are obtained by integration over 
the source. 

Electric potential 4 from the charge distribution Q(x’) 
is given by (sett,ing 47rc, -+ 1) 

Q = J dx’G,(x, x/)&(x’) (3) 

where 
1 

G,(x,x’) = - 
Ix - X’I’ 

Away from the charges the Green’s function G is in- 
finitely differentiable, and it is in principle possible to 
compute the multipole coefficients Mk,j by differentiating 
equation (1). Hence the multipole coefficient of the elec- 
trostatic field at the origin has the form 

Mk,f = J dx Kk,l(x) Q(x) (5) 

and the explicit expression of Kk,l is given in the Table 1. 
The magnetic field is determined from the current source 

I by Biot-Savart’s law (setting /1,/4~ --+ l), 

B = - J clx’G,(x, x’)xI(x’) 
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where G, is the Green’s function for the magnetic field 
and its explicit form is given by 

G,(x, x’) = + 

where 
r = Ix - X’I. 

After some algebra the multipole coefficient Mk,l of the 
magnetic field at the orgin can be recast as, 

M~,I = - J dx [A’;,, I,(x) + I<;,, Iy(x) + Ii’& &(x)1 (6) 

with the explicit form of the vector coefficients Kk,l given 
in the Table 2. 

The zeroth order coefficient MO,O is determined by the 
integral along the z-axis 

Mo,o(x) = - J x B,(x’)dx’. 
0 

3. COMPUTATIONAL RESULTS 
It is straight forward to evaluate the multipole coeffi- 

cients from the expressions (5) and (6). In principle mul- 
tipole coefficients of all orders, still exact, can be obtained 
from the method above, however, in the present work the 
expansion was truncated at 10th order since the number 
of coefficients increases by the square of the order and the 
expansion usually converges rapidly for the typical system 
of interest. 

The coefficients are made ditnensionless by choosing the 
scaling length of aperture radius a and the proper scalar 
potential value at the aperture radius and 0 = 0, i.e.: 

10 10 

4 = 4, xc Mk,/(Z) (f>i cos(10) (7) 
k=Ol=O 

Test runs made for an electrostatic quadrupole show an 
exact match to the previous calculation using the Differ- 
ential Algebra (DA) technique [l] except the computation 
time is reduced by at least two orders of magnitude. Typ- 
ical computation times spent for the extraction of the co- 
efficients up to tenth order is less than 1 second on a Cray 
computer (XMP) from the charge nodes of 5000 points. 
Calculation of the charges on the nodes which involves the 
inversion of the capacity matrix t,akes about 800 Cray cpu 
seconds as before. For the magnetic multipole expansion, 
two test runs are presented for simple geometries. Case 
one is the simple Helmholtz coil consisting of two identical 
circular rings of radius a separated by the equal distance 
a. Axi-symmetry of the field gives zero coefficients except 
the Mk,c for even k. This is an excellent example showing 
advantage of the multipole expansion since only a few coef- 
ficients are needed to describe the 3-D vector field at fixed 
z. Figure 1 shows the non-zero multipole coefficients up 
10fh order. Though not plotted, the axial magnetic field 
at the axis can be obtained from the z-derivative of Mo,o 

and the slope of the A40,c in the plot is seen to be nearly 
constant as expected. 

A second case is the simple magnetic quadrupole made 
of current elements shown in Figure 2. A single unit of 
current is flowing on the arc-shaped current elements of 
aperture radius a and two units of current are on the 
straight segment running along the z-axis. The length of 
the straight section is chosen to be the same as the aper- 
ture radius (u) so that a rich content of multipoles from 
the fringe field is produced. From the symmetry of the 
current geometry, all the multipole coefficients with 1 other 
than 2 + 4k for a non-negative integer k are zero. Figure 
3 shows the non-zero multipole coefficients of the simple 
test current distribution of the quadrupole in the Figure 2. 

5. CONCLUSION AND DISCUSSION 
The general multipole expansion method of the static 

field is presented. The previous multipole calculation of 
the three-dimensional electrostatic field from the arbitrary 
electrode geometry [I] has been generalized to the mag- 
netic field. In addition, using symbolic algebra, instead 
of differential algebra[2], each multipole coefficient is ex- 
plicitly calculated, hence the computation time is reduced 
substantially (by a factor of hundred or greater), which 
makes this method practical. 
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Table 1. Electric multipole coefficient Kk,, at origin 
from a unit source at x. Here r = x2 + y2 + z-2. 

Ii-o,0 = 1 
r 

Ii 
X 

1,l = 
P 

Ic2,2 = 3 ‘“,‘, y2) 

K3,3 = 5 ( 
x3 - 3 x y2) 

K4,4 = 35 (x’Pisx2y2 + y4) 
64 rg 

IT 5,5 = 

63 (x5 - 10x3yZ+5xy4) 
128 rll 

Ii' 6,6 = 

231 (x” - 15 x4 y2 + 15 x2 y4 - y6) 

512 r13 

K2,0 = 
x2 -I- y2 - 2 x2 

4 r5 
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Table 2. Magnetic multipole coefficient K;,I at origin 

from a unit current source Ii at x. Here r = Jx2 + y2 + t2. 

%J = (x2 ;;2, r 

Ii’& = Ii& = K& = Ii;,l = A-,& = 0 

Iiy2 = s 
r 

Iq4 = 
35y (3x2 - y2) z 

64rg 

A-;,, = 
63xy (x2-y2) z 

327-l' 

ii; s = 
231~ (5x4 - 10 x2 y2 + y4) z 

512 r13 
3YZ KC0 = - 
4 r5 

I<‘y 0,0 -- - 

KY 
z 

1,l = I=J 

KY 
3x2 
- 2,2 = r5 4 

KY 
5 (x2 -Y”) z 

3,3 = 

IiY - _ yz-3yq 35x z 
4,4 64 rg 

KY 

5,5 

= (x4 6x2y2 +y4) 63 - z 

128r” 

KgY6 = 
231x (x4 - 10 x2 y2 + 5 y4) i 

512 r13 

3xz 
1{2yo = -- 

4r5 

Ii& = x;,, = A-;,, = lqo = A& = A-;,,, = 0 

-3xy 
A-;,, = yj--g-- 

A-;,, = 
5y (-3x2+yZ) 

8r7 

IcqZ,4 = 
353:y (-x2+y2) 

16rg 

KgZ,5 = 
63 y (-5 x4 + 10 x2 y2 - y4) 

1284’ 

I<;,$ = 
231xy (-3x4 + 10x2y2 -3~") 

256 r13 

It-< 1 = 
3 y (-x2 - y2 + 4 z”) 

8 r7 

Fig. 1 - Multipole coefficients of the Helmholtz coil up to 10th 
order. All none-axisymmetric coefficients are zero. In 
Helmholtz coil, axial separation of the identical rings 
is equal to their radius (u). 

Fig. 2 - Current distribution in a simple quadrupole geometry. 
A single unit of current is on the arc shaped elememts 
and two units of current is on the straight section in 
order to prevent charge accumulation. 

Fig. 3 - Multipole coefficients kfk,r for the simple quadrupole 
geometry in Figure 2. The length of the straight sec- 
tion element is chosen to be the same as the aperture 
radius. From the symmetry, coefficients of I= 0, 1, 3, 
4, 5, 7, 8, and 9 are zero. 
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