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Abstract 

Generation of various space-charge waves due to localized 
perturbations on the beam parameters, namely the velocity, 
density, and current, is reported. Analytical solutions of one- 
dimensional fluid equations under such perturbations are 
presented and compared with the experimental results. 

I. INTRODUCTION 

The study of longitudinal instabilities in space-charge 
dominated beams is an on-going research program at the 
University of Maryland [l]. It has significant importance to 
high current beam acceleration and transport such as in the 
case of induction linacs for heavy ion fusion drivers [2]. As 
the first phase of the program, we study the generation, 
propagation, and edge reflection of space-charge waves due to 
localized perturbations in an environment without instability. 

The behavior of space-charge waves has been long studied 
in the fields of microwave generation and particle acceleration 
[3,4]. The underlying physics is well known when beams are 
perturbed by sinusoidal signals. In order to study beam 
physics of longitudinal instability and beam-wave interaction, 
it is desirable to generate space-charge waves in the form of 
localized perturbations instead of sinusoidal signals. There is 
very little information about this in the literature. 

In the experiment we found that the space-charge waves 
generated by localized perturbations have various forms, 
depending on how specific beam parameters are perturbed. In 
general two space-charge waves have different amplitude and 
polarity under the initial velocity and density perturbations. It 
is only in some special cases, the two space-charge waves are 
generated with the same amplitudes. There are also 
conditions under which the two space-charge waves degenerate 
into one: a fast wave only or a slow wave only. The 
experimental results, analytical solutions and a comparison 
between the two are reported in this paper. 

II. EXPERIMENTAL RESULTS 

The experimental setup consists of a short pulse electron 
beam injector [5] and a 5-m long periodic solenoid focusing 
channel [6]. The electron beam is generated by a gridded 
electron gun. The initial perturbation is introduced to the 
beam by modulating the grid pulse with a small bump as 
shown in Fig. 1. This corresponds to a positive velocity 
perturbation on the beam particles, which in turn produces the 
initial density, or current perturbations at different values 
depending on the gun operation conditions. The various 
space-charge waves in the form of localized perturbations are 
then generated and propagate on the beam. The beam current 
and energy can be measured along the channel for analysis. 
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Fig.1. Grid-cathode pulse cf the electron gun, showing a 
perturbation bump. 

Figure 2 shows the beam current waveforms measured at 
2 different locations along the transport channel. Two current 
waves, namely, the slow and fast waves appearing in the beam 
current waveform, are generated in almost equal amplitudes and 
opposite polarities, and propagate apart. 
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Fig. 2. Beam current waveforms, showing that two 
current space-charge waves with almost equal amplitudes and 
opposite polaritics propagate away from each other. 

Figure 3 shows that only one fast wave with a positive 
polarity generated on the beam current, which propagates 
toward the beam front. By contrast, Fig. 4 shows only one 
slow wave with a negative polarity on the current waveforms, 
which propagates toward the beam tail. 
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Fig. 3. Beam current waveforms with only one fast 
wave, propagating towards the beam front. 

Fig. 4. Beam current waveforms with only one slow 
wave, propagating towards the beam tail. 

Figure 5 shows the space-charge wave signals from an 
beam energy analyzer, where the beam particles with an energy 
above the beam average energy pass through the energy 
analyzer and form the bumps of the traces. On the top h-ace, 
only one fast velocity wave appears, corresponding to the case 
in Fig. 3, while on the bottom trace only one slow wave 
appears, corresponding the case in Fig. 4. On the fourth trace, 
two velocity waves with almost the same amplitude appear, 
that is close to the case in Fig. 2. Other traces show that one 
velocity wave is dominant over another. 

III. ANALYTICAL SOLUTIONS 

In order to interpret the experimental observations, the 
cold fluid model has been employed. The space-charge waves 
are solved in the time domain for a localized perturbation 
instead of in the frequency domain for a sinusoidal wave. The 
specific solutions under the given initial and boundary 
conditions are obtained instead of eigenmode solutions from 
dispersion equations. All possible initial conditions of 
velocity, density, and current perturbations occurred in the 
experiment are taken into consideration. 
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Fig. 5. Velocity waves measured by beam energy 
analyzer, showing the change from a fast wave to a slow wave 
when the perturbation conditions vary in the gun. 

The one-dimensional fluid model consists of the linearized 
continuity equation and momentum transfer equation: 
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where h(z,t) and v(z,t) are the line charge density and the 
particle velocity, the subscripts 0 and 1 representing the 
unperturbed and perturbed quantities, respectively, Ez(z,t) is 
the longitudinal electrical field induced by the a. c. component 
of the beam current, which equals to (-g/47t~~)(dht/dz) under 
the long wavelength condition, g is a geometric factor of order 
unity, and e/(my3) denotes the ratio of the charge and the 
“longitudinal mass” of the charged particles. 

By applying the double Laplace transformations both for 
the space z and time t, defined by 

T(k, s) = ~dz~f(z,t)e-‘kZ’St’dt 
0 0 (2) 

where f(z,t) is a function representing vt(z,t), hl(z,t), or il(z,t) 
- the perturbed beam current, Eq. (1) then can be converted to 
algebra equations for ~1, ht and it in the k-s domain. 

Further, we consider the following initial and boundary 
conditions: a).There is no perturbation anywhere along the z- 
axis when t<O; b). At z=O for t>O+ a local velocity 
perturbation is introduced to the beam in the form 

qo, t) = av ,W) (31 
where a is a small quantity to. specify the strength of ;he 
perturbation, and G(z) is the unit gate function defined by the 
difference of two Heavyside unit step functions 

G(z)=U(t) -ut-z) ; W 
c). Assume the initial current perturbation has the form 
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i,(O, t) = Pi,G(7) 
? (5) 

IV. DISCUSSION 

with p as a small quantity to specify the perturbation strength. According to Eq. (13), the two current waves have the 
Therefore, the initial density perturbation is determined by same amplitudes with the opposite polarity only when p=O, 

)#I O= (P- alhoG 
i.e. without an initial current perturbation. This is the case in 

(6.) 
Fig. 2. When p/a=(l+v&,), only one fast wave is generated 

Thus, the perturbed beam parameters can be found as 
as in the case of Fig. 3. When p/a=(l-v&), only one slow 
wave survives as shown in Fig. 4. 

Xl(k,s)= ~ios+(~-a)i,(v~-E:)k$(l-e-s~) 
( s + kvo)2 - k2c; 

h) 
v&k, s> = 
[avt+ (p- a)ct$+ avO(vi-cf)k 

( s + kvo)’ - k2cf 
i(l - e- “3 

aid ’ 63) 

y&k, s) = voX,(k,s) + h&k, s) 
(9) 

Here c, is the so called “sound” velocity of space-charge waves 
and defined as 
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(10) 
Inverse Laplace transforms yield the perturbed beam 

density, velocity and current in the real time-space domain as 

Fig. 6 shows the relative amplitude of the velocity waves, 
i.e. the ratio of the velocity wave amplitude over the initial 
perturbation amplitude avo, versus the quantity p/a for 
c$va=O.l. It is only at the point A where p/a=1 indicating 
the initial density perturbation is zero, the two velocity waves 
have the same polarity and the same relative amplitude of l/2. 
Elsewhere, the two velocity waves have different amplitudes, 
even different polarity when 1 p/a 1 is large enough. The sum 
of the two amplitudes is always 1, i.e. the initial perturbation 
amplitude, as expected. The slow wave vanishes completely 
at P/a=ll, while the fast wave vanishes at p/a=-9. This is 
compared with the scope traces in Fig. 5. 
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Fig. 6. Relative velocity wave amplitude vs. perturbation 
parameters. 

V. SUMMARY 

vO vt(z,t)=+2 a-(j3-a)-4 
[ 1 The generation of space-charge waves due to localized 

G v. [z-(“o-c,)‘](T~ perturbations to the beam parameters is studied experimentally 
and analytically. Various forms of space -charge waves have 

[z-(“o+c*)t](T) 
been observed and they are the solutions of the fluid model. 

(12) Good agreement between the theory and experiment has been . 
found. 

[z-(‘()-cs)p 
VI. REFERENCES 

[I] J. G. Wang, M. Reiser, W. M. Guo, and D. X. Wang, Particle 
Accelerators, Vol. 37-38 , 181 (1992). 

G[z-(‘o+cs)t](~) (13) PI E.P.Le e, in the Proceedings of the 1992 Linac Conference, 
Ottawa, Canada, Aug. 24-28, p. 591. 

Here the two-dimensional unit gate function is defined as [3] A. H. W. Beck, Space-Charge Waves, Pergamon Press, 1958. 
[4] J. D. Lawson, The Physics of Charged Particle Beams, Chauter 

6, Oxford University-Press, second edition, 1988. * 
Gp- (“o+cs)tl(~) = [5] J. G. Wang, D. X. Wang. and M. Reiser. Nucl. Instr. & Meth. 

u[z- (vo+ c s)(t-‘C)]-UCz-(vo_+cs)t]. (14) 
in Phys. Res. A316, 112 (1992). 

[6] D. X. Wang, J. G. Wang, D. Kehne, and M. Reiser. accepted 
for publication in Applied Physics Letters. 

0-7803-1203-l/93$03.00 0 1993 IEEE 3284 
PAC 1993


