
Space-Charge Calculations in Synchrotrons 

S. Machida 
Superconducting Super Collider Laboratory * 

2550 Beckleymeade Ave., Dallas, Texas 75237 

Abstract 

One obvious bottleneck of achieving high luminosity in 
hadron colliders, such as the Superconducting Super Col- 
lider (SSC), is the beam emittance growth, due to space- 
charge effects in low energy injector synchrotrons. Al- 
though space-charge effects have been recognized since 
the alternating-gradient synchrotron was invented, and the 
Laslett tune shift usually calculated to quantify these ef- 
fects, our understanding of the effects is limited, especially 
when the Laslett tune shift becomes a large fraction of 
the integer. Using the Simpsons tracking code, which we 
developed to study emittance preservation issues in pro- 
ton synchrotrons, we investigated space-charge effect,s in 
the SSC Low Energy Booster (LEB). We observed detailed 
dependence on parameters such as beam intensity, initial 
emittance, injection energy, lattice function, and longitu- 
dinal motion. A summary of those findings, as well as the 
tracking technique we developed for the study, are pre- 
sented. 

I. In-TRODUCTION 

One of the challenging issues for proton synchrotrons 
is to store and accelerate a high brightness beam, that is 
an intense beam with a very small emittance. In a high 
energy accelerator complex such as the Superconducting 
Super Collider (SSC), the luminosity at the final collider 
directly depends on the brightness in the preceding inject,or 
chains. Space-charge effects in the low energy end of an 
accelerator complex, for instance, the Low Energy Booster 
(LEB) and possibly the Medium Energy Booster (MEB) 
at the SSC, could be a potential problem for the emittance 
and thus brightness preservation. 

,4s a measure of space-charge effects, the Laslett tune 
shift is usually calculated, that for Gaussian distribution 
is hv = -(rpnl)/(47r/+y2?Bf); where rr, is the classical 
proton radius, n, is the total number of particles in a ring, 
4 and y are the Lorentz factors, tn is the normalized rms 
emittance, and Bj is the bunching factor. ’ The con- 
ventional design criterion imposes the small Laslett tune 
shift, such as -0.2, to keep the entire beam stay away 
from lower order resonances. Although most of existing 
machines has been designed in that way, the brightness 
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‘In this simplified formula, we ignored the effects of image charge 
and current in surroundings such as magnets and beam pipe. 

has been increased more than the design value experimen- 
tally in some machines. An example would be t,he AGS 
of BNL and the PS Booster of CERK, and the maximum 
tune shift like -0.5 to -0.6 has been achieved. The tune 
shift criterion such as -0.2 is by no means a fixed number. 

More important.ly, the Laslett, tune shift itself does not 
predict the emittance behavior. If it is small enough, 
the beam is, for sure, free from any resonances and no 
emittance growth is expected. When t,he tune shift, be- 
comes large, say -0.5, some particles in the beam would 
be at some resonance. Once the amplitude of the particles 
changes, the particles can escape from the resonances and 
become stable again. The strong nonlinear nature of 6he 
space-charge force, namely detuning, makes it difficult to 
estimate emittance evolution. 

As for a source of resonances, the space-charge force it- 
self, can excite it, without lat,tice imperfect,ions. In late 
‘6Os, Montague discussed the importance of zero-lb har- 
monics of the fourth order resonance; 2v, - 2v, = 0, which 
is inevitable due to the octupole component of the space- 
charge force [l]. A ccording to the recent work by Parzen 
and Machida, non-zero harmonics of the even order res- 
onances should be also avoided because they are excited 
by the space-charge force coupled with periodicity of lat- 
tice functions [2]. One way to weaken those resonances is 
to make the lattice with higher periodicity. The effect of 
half-integer resonance excited by lattice imperfections was 
studied for the coasting beam [2]. A study by Machida 
shows that maximum tune shift can be more than the dis- 
tance between the bare tune and the half-integer resonance. 
The ratio of possible tune shift to the distance depends on 
the charge distribution and it is about two for Gaussian 
distribution. 

In this paper, we first describe the recent develop- 
ment of the space-charge modelling by multi-particle track- 
ing. Then, we discuss systematic exploration in parameter 
space; beam intensity, initial emittance, injection energy, 
lattice function, and longitudinal motion, using the LEB 
as an example. 

II. MODELLING OF THE SPACE-CHARGE 
IN SYNCHROTRONS 

A. The Simpsons Program 

The Simpsons program has been developed to study 
emittance preservation issues in proton synchrotrons [3]. 
The program consists of two major parts. One is a par- 
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title t’racking part that tracks macro particles in the 6-D 
phase space with acceleration. Realistic modelling of longi- 
tudinal motion is essential for a rapid cycling synchrotron 
such as the LEB in which the synchronous momentum 
rises from 1.219 GeV/c to 12 GeV/c within approximately 
26,000 turns. The space-charge force is strongly time de- 
pendent. The independent variable is time, in which one 
can obtain a snapshot’ of macro particle distribution at each 
time step. All lattice elements including an RF cavity are 
represented by thin lenses lattice created by the program 
TEAPOT [4]. 

The other part of the program calculates the space- 
charge force. It is incorporated as a thin lens kick in each 
time step and t,ypically 100 to 2000 kicks are applied in 
one turn. We made three different degrees of approxima- 
tion to compute the space-charge field. ‘The most advanced 
one, though it is most’ time consuming as well, employes 
the Particle-In-Cell method [5]. Three dimensional grids, 
in real space, are assigned to enclose the entire beam. At 
every intersection of the grids, a fractional charge is allo- 
cated according to location of macro particles nearby, and 
then the Maxwell equations are solved in a difference form. 
A boundary condition is imposed such that the scaler po- 
tential is zero at the beam pipe radius, which is constant 
around t,he ring. Electra-magnetic fields, at the location 
of macro particles: are interpolated by the fields at neigh- 
boring grids and it changes the momentum. Typically, 
more than 10,000 macro particles are necessary to repre- 
sent the charge distribution accurately and it takes about 
100 Cray cpu hours to simulate the first 10 msec of the 
LEB, which is one fifth of a cycle. We call it “strong- 
strong” approximat’ion, because the emittance and charge 
distribution are updated continuously and it is expected 
to be self-consistent. 

The second approximation assumes that charge distribu- 
tion is always Gaussian and the image charge and the longi- 
tudinal space-charge forces are negligible. By that assump- 
tion, the transverse space-charge force can be computed 
analytically with a certain truncation [6]. By using approx- 
imately 1000 macro particles, the rms emittance calculated 
at the end of each turn and the space-charge field are com- 
puted based on that emittance. Although the charge distri- 
bution is assumed to remain Gaussian, it is self-consistent 
that, the space-charge force is a function of the instant,a- 
neous emittance. We call it “semi strong-strong” approx- 
imation. In the longitudinal plane, the emittance is fixed. 
The bunch shape is, however, fitted on the matched bucket 
which is a function of the bending field, its derivative, and 
RF voltage at each time so that the time dependence of 
a bunching factor is included. It requires 10 Cray cpu 
hours when 1000 macro particles are tracked to complete 
the LEB simulation. 

The third approximation, which is the most simpli- 
fied model, assumes that the charge distribution is always 
Gaussian and the emittance does not change. The same 
formula is used to calculate the space-charge force of Gaus- 
sian distribution as the “semi st,rong-strong” approxima- 

tion without updating the emittance. That approximation 
should be adequate, when the beam emittance growth is 
small and when one wants to see either initial behavior 
of the emittance growth using many macro particles or 
stability of single particle. We call it “weak-strong” ap- 
proximation. Most of t,he following simulation resuhs are 
based on “semi strong-strong” approximation. 

Initial charge distribution was made as Gaussian in both 
transverse planes, and we examined emittance each turn by 
two independent definit,ions. One is the the rms emittance 
calculated from 1000 to 10000 particles. The other is the 
emittance by fitting a transverse beam profile to Gaussian. 
In the following exercise, we found that these emittance 
definitions agree with each other, implying that the charge 
distribution remains Gaussian throughout one simulation. 

B. Fermilab Booster Simulation 

A simulation of the Fermilab Booster was performed 
for comparison with its experimental data that shows the 
emittance growth as a function of beam intensity [7]. Al- 
though our previous study indicated that asymptotic emit,- 
tance depends on multipoles and misalignment of lattice to 
some degree [2], we assumed the same magnitude of errors 
in the Fermilab Booster model as in the LEB because there 
is no information available on the lattice magnets. (Those 
are the rms misalignment of 0.4 mm in both horizontal 
and vertical planes, the rms rotation angle of 1.0 mrad, 
the rms closed orbit distortion after correction of 1.0 mm, 
and the same multipole in the dipoles and quadrupoles.) 
We tested five different lattices with five different seeds to 
calculate asymptotic emittance of the first 9 msec by “semi 
strong-strong” and “weak-strong” approximations. 

Figure 1 shows the comparison. The error bar of simula- 
tion results shows the range due to different seeds. There is 
apparent discrepancy between the experimental data and 
the simulation results when the beam intensity is high. 
The following remarks should be made. First of all, the use 
of the multipole and misalignment data of the LEB may 
not be a good model for the Fermilab Booster. Therefore, 
we do not have rigorous basis for one-to-one comparison. 
However, a trend such that the emit’tance start growing 
when the beam intensity is 1.5 x 10” per bunch, agrees in 
the experiment and the simulations. In addition, the sim- 
ulation shows that the emittance growth lasts about 5 or 6 
msec after injection and it agrees with the recent measure- 
ment by Graves e2 al., who took the time dependence of the 
emittance growth in the Fermilab Booster [8]. The same 
experimental data also unveils that the emittance evolution 
has two steps, one is after injection and the other after the 
transition energy crossing. We may have missed a part of 
emittance growth at the transition energy crossing which 
is not included in the simulations. The asymptotic emit- 
tance as a sum of the two steps by Graves is more or less 
equal to experimental data of Figure 1. 
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Figure 1. Emittance growth in the Fermilab Booster. 

III. SIMULATION RESULTS 

.4. Beam Parameter Dependence 

The design beam parameters of the LEB are 1 x lOlo 
particles-per-bunch (total number of part,icles are 1.14 x 

1012) with 0.40 r. mm mrad rms emittance. * The beam 
energy rises from 600 MeV to 11.1 GeV in 50 msec with 
sinusoidal ramping curve. We explored three parameter 
space, namely beam intensity, initial emittance, injection 
energy, keeping other two constant. The asymptotic emit- 
tance is defined as the emittance about 15 msec after in- 
jection, at that time emittance growth has completed. The 
model lattice has multipoles, misalignment, and closed or- 
bit errors. We used measured multipole data of the AGS 
Booster magnets [9]. B f e ore doing systematic parameter 
search, we made a preliminary run to test five different 
seeds for lattice randomness and picked up the worst lat- 
tice in the following simulations. 

Figure 2 shows asymptotic rms emittance as a function 
of beam intensity. Figures 3 and 4 show the emittance evo- 
lution and maximum tune shift. There is slight emittance 
growth already started when the intensity is 1 x 10”. Be- 
low that intensity, no emittance growth is observed. The 
asymptotic emittance is almost linear with respect to the 
intensity when the intensity becomes higher. 

Figure 5 shows asymptotic rms emittance as a function 
of initial rms emittance. Figures 6 and 7 show the emit- 
tance evolution and maximum tune shift. When the ini- 
tial emittance is 0.60 x. mm . mrad, there is almost no 
emittance growth. When the initial emittance is less than 
that, the emittance growth is inevitable and the asymp- 
totic emittance cannot be less than 0.44 r. mm mrad no 
matter how small emittance is injected at the beginning. 
Overshoot phenomena, namely smaller initial emittance 
ends up with larger asymptotic emittance, is not observed 
as least within the initial emittance range we explored. 

Figure 8 shows the rms emittance as a function of injec- 
tion energy. Figures 9 and 10 show the emittance evolution 
and maximum tune shift. If we make the injection energy 
1 GeV or higher, almost, no emittance growth is observed. 

‘There is another operational mode called test beam mode, which 
is supposed to have 5 x 10” particles per bunch with the rms emit- 
tame 4.0 T. mm . mrad. 

Below 1 GeV, less injection energy is taken, more asymp- 
totic emittance is observed as expected. 

B. Lattice Superperiodicity 

The present LEB lattice has three fold symmetry with 
three long straight sections. If the structure resonance 
dominates the emittance growth, the higher periodicity lat- 
tice should help reducing the emittance growth. By tak- 
ing only arc part of the present LEB lattice, we made a 
higher superperiod lattice, 16-fold symmetry with almost 
same circumference and looked at the emittance growth 
as a function of the beam intensity. Each lattice element 
has the similar magnitude of multipoles and misalignment 
as the three-fold symmetry lattice and the closed orbit are 
corrected as the same level, namely about 1 mm as rms. As 
shown in Figure 11, not much improvement was obtained. 

C. Synchrotron Oscillation Tune 

Synchrotron tune becomes as high as 0.05 at 4 msec after 
injection and gradually decreased toward the final energy. 
To look at the dependence of the emittance growth on the 
synchrotron tune, we fixed the energy and rf voltage and 
tracked particles under constant synchrotron tune. Keep- 
ing the peak intensity constant, we varied synchrotron tune 
under three different conditions, namely with constant 
Ap/p, with constant longitudinal emittance, and with con- 
stant bunch length. Figures 12 and 13 show the rms emit- 
tance after 6000 turns as a function of synchrotron tune. 
Since there was no energy ramping and the turn number 
was not enough to have the emittance saturation, they 
are not asymptotic in value. The horizontal emittance at 
vs = 0.20 and the vertical emittance at v, = 0.02 have a 
bit larger emittance but the overall synchrotron tune de- 
pendence is marginal. 

IV. DISCUSSIONS 

The simulation results described previously indicate that 
there is a certain limit of the maximum brightness. That 
can be seen in Figure 14 in which we plotted the brightness 
defined by the rms emittance divided by beam intensity, 
as a function of 1) beam intensity, 2) inverse of t,he initial 
rms emittance, and 3) the initial ,Dr2 which corresponds 
to injection energy. The horizontal unit is scaled such that 
the design value of each parameter is one. Figure 14 shows 
at least two things. One is that the brightness has a certain 
limit no matter how small initial emittance or intense beam 
are injected as long as the injection energy is fixed to 600 
MeV. That brightness limit is about 10% higher than the 
design value. The other is that if the injection energy is 
increased, the brightness can be as high as 20% with the 
design beam intensity and initial emittance. 

A question is then what makes that brightness limit. 
From Figures 4, 7, and 10, when the tune shift is more 
than -0.60 or so, beams are not stable. Since the verti- 
cal bare tune is 11.80, the maximum loaded tune is about 
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Figure ‘2. Asymptotic emittance vs. 
beam intensity. Design beam inten- 
sity is 1 x 10” per bunch. 
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Figure 5. Asymptotic emittance vs. 
initial emittance. Design initial emit- 
tance is 0.47~ mm mrad. 
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Figure 8. Asymptotic emittance vs. 
injection energy. Design injection en- 
ergy is 0.6 GeV. 
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Figure 11. Asymptotic emittance vs. 
beam intensity in 16-fold symmetry 
lattice. 
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Figure 3. Emittance evolution of Fig- 
ure 2. Each figure indicates beam 
intensity. 
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Figure 4. Tune shift evolution of Fig- 
ure 2. Each figure indicates beam 
intensity. 
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Figure 9. Emittance evolution of Fig- Figure 10. Tune shift evolution of Fig- 
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11.20. According to findings of the previous work, there 
are two possible mechanism which could explain that limit. 
One is the structure fourth integer resonance, that is sitting 
at 11.25. The other is resonances excited by lattice imper- 
fections. Among them, the strongest one is the half-integer 
resonance at 11.50. By half-integer resonance, emittance 
growth becomes visible when the maximum tune shift is 
twice the distance between the resonance and bare tune 
according to the previous study [2]. Both mechanisms 
possibly increase the rms emittance because of the super- 
periodicity of the LEB and lattice imperfections. Similar 
results in the lattice with 18fold symmetry implies that 
the latter is more plausible. 
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Figure 14. Brightness vs. beam intensity, inverse of initial 
emittance, and /?r2. 

To confirm that, we looked at the emittance growth in 
the present LEB and the 16-fold symmetry latt,ices both 
without multipole, misalignment, or closed orbit distor- 
tion. In these lattice, only the nonlinear elements are chro- 
maticity correction sextupoles. We took 5 x 10” particles 
as beam intensity to see the difference if any. Table 1 lists 
the asymptotic emittance of two different superperiodic- 
ity lattices, with and without lattice imperfections. The 
uncertainty of emittance in the LEB lattice with imper- 
fections indicates the dependence of five seeds. From that 
table, it is clear that the brightness limit is caused by lat- 
tice imperfections in the both lattices. Although the lattice 
of higher superperiodicity shows the better behavior with- 
out lattice imperfections, the difference of the two lattice 
becomes marginal once the practical imperfections are in- 
cluded. 

Table 1 
Asymptotic Emittance in the LEB and 

the 16-fold Symmetry Lattice with 
and without Lattice Imperfections 

V. SUMMAR\’ 

Using the LEB of the SSC as an example, we explored 
parameter space and invest,igated space-charge effects. We 
found that there is brightness limit. The brightness is 
bound, no matter how small emittance or intense beam 
is inject,ed. That limit is independent of the lattice super- 
periodicity and synchrotron tune. The source of the limit is 
caused by lattice imperfections of the practical magnitude. 

LEB 16-fold 
lattice lattice 

PI 

PI 

[31 

PI 

[51 

PI 

171 

PI 

PI 

without 
imperfections 1.2 r mm mrad 0.66 7r mm mrad 

with 
imperfections 2.0 & 0.2 A mm mrad 2.1 s mm mrad 
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