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Abstract Eq. (3) can be converted to a surface integral, leading to[l] 

We present several analytic techniques to calculate the 
impedance of an obstacle in a beam pipe in a variety of 
applications. 

I. INTRODUCTION 

In the present paper we shall review methods of calculat- 
ing the longitudinal and transverse coupling impedances 
of an obstacle (e.g. pillbox, hole) in a beam pipe of radius 
Q for a point charge traveling at ultra-relativistic speeds 
(B = l,y > 1). s ince the coupling impedance is the fre- 
quency domain equivalent of t,he wakefield written in the 
time domain, the drive current in the frequency domain 
has a sinusoidal dependence on z of the form 

J,(t, y, 2; k) = llJS(x - xl)S(Y - yl) exp(--jkz), (1) 

where k = w/c and where the time dependence is exp(jwt). 
Here the point charge travels in the r-direction with con- 
stant offset 2 = .cl,y = yl. The definition of the longitu- 
dinal coupling impedance is then 

1 O” 
Z,,(k) = -lo _ 

J 
dz Ez(xl,yl,z;k)e jkz 

00 

= 
J 

do I? . f’ (2) 

where the volume integral is a more general form which will 
also be used in the transverse impedance. The longitudinal 
impedance is obtained by setting ~1 = y1 = 0. 

We now consider two situations. The first! denoted by 
the subscript 1, is the lossless pipe and the second, denoted 
by 2, is t,he pipe with the obstacle. We then construct 

I&(2[Z;2’(k) + Zi”‘(k)] = -/du[& . ? + 2:; . 51, (3) 

where Z;‘)(k) is imaginary. (It actually vanishes in the 
ultrarelat,ivistic limit .) Using 

J = 0 x HI,~ - jwcEl,z, V x El,2 = -jwpHl,z, (4 

‘Work supported by the Department of Energy 

~Io~*Z,,(k) = /d& ii,~i?;~l?~ = jdSI ii14$xIj;, (5) 

S2fSl SlfS2 

where the first integral is over the surface of the obstacle 
different from the beam pipe and where the second integral 
is over the surface at T = a which is differznt from_ the 
obstacle. For tl = y1 = 0, the solution for El and HI in 
the ultrarelativist,ic limit is 

El, = ZOHl(? = zo 10 Gexp(-jkz), El, = 0. (6) 

Thus we need to solve Maxwell’s equations for &, zz, with 
the drive beam given in Eq. (l), and use Eq. (5) to calcu- 
late the longitudinal impedance. 

The eul’rgy loss of the particle traveling past an obstacle 
can be obtained directly from the real part of the longitu- 
dinal coupling impedance. Specifically it is 

APV = gJ^o dk Re Z,,(k), 
0 

(7) 

where we have used Z,,(-k) = Z;(k). Contributions to 
AS’ can come from wall losses, energy radiation to the 
outside through the obstacle, and generation by the obsta- 
cle of outgoing propagating modes in the pipe. 

The transverse coupling impedance can be analyzed sim- 
ilarly. Starting with the axial dipole drive current 

J, = Io~(Y)[~(x - 21) - 6(x + zl)] ev(-jkz), (8) 

the transverse impedance can be expressed as the limit for 
small 11 of 

J 
O” dzaEz jkz -e . 

-cQ 8X 
(9) 

Writing the derivative with respect to z as the difference 
for z = 4~x1 divided by 2x1, we find 

1 z,(k) = - w 
/ 

d~[Ez(xtvO,~) 

- EZ(-xl,O,z)]ejkz. (10) 
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Using the drive current in Eq. (8)) the transverse gf vanishes, and we can express Ezz in terms of HI@ and 

impedance can be written in terms of t,he same volume the surface impedance. Specifically 
integral as before, namely 

Ezz = -(I + j)(kzo6/2)H~, (17) 

Z=(k) = - l 
4c+l$ J dv,??. ci=. (11) where 20 = 377 ohms is the impedance of free space and 6 

is the skin depth of the wall material at frequency Rc/Pn. 

As before the volume integral can be converted to a surface 
Thus the impedance per unit length is given by 

integral, leading to[2] (18) 

4RIT 110 12 = J - J 
(IoI*ZI;~~ = (1 +j)(kZ~6/2)~ds(Hlel’, 

d&ii2 -2’; x Hz = dSliil .I?? x ,‘!I;. (12) where the line integral is over the circumference of the 

h#Sl Sl#S:, beam pipe. Using Eq. (6) we find for a length of pipe 27rR 

In this case, for small x1, 

El = -exp(-jkz)VI&, Z&l = 2 x 21, (13) 

where 
zo IO 

h(p,Q) = ~ 
7T 

(14) 

satisfies the boundary condition $l(a,t?) = 0 at the beam 
pipe radius r = a. Here i is a unit vector in the z-direction. 

In the sections that follow we will apply the formulation 
outlined above to a variety of different problems. 

II. NUMER.ICAL CALCULATION 

ZIP” = (1 +jwR = (1+ j)d 
zo 2a 2an1 (19) 

where the second form in terms of n = kR, the harmonic 
of the rotation frequency in a circular accelerator, is the 
one usually used. 

The corresponding analysis for the transverse impedance 
for a pipe length 27rR, using Eqs. (12)-(14), leads to 

F = (1 +j)F. (20) 
These results, first obtained by Nielsen, Sessler, and 
Symon[G], have been extended to pipes of rectangular[7, 21 
and elliptical[2] cross section. 

. 
For an arbitrary obstacle, the fields E? and H2 can be 
written as 

IV. IMPEDANCE OF HOLES 

E* = .El + G, I&! = I& + z, (15) Equation (5) is also a natural starting point to calculate 

where the fields e’ and h now satisfy Maxwell’s equations 
with no drive current, and the boundary condition along 
the met,allic walls of the pipe and obstacle is 

the impedance of a small hole in a beam pipe. Taking the 
integral over the inside surface of the beam pipe we have 

ii* x t?= -n’* x il. (16) 

Furthermore one can consider only a finit.e section of the 
beam p_ipe and apply an outgoing boundary condition t,o 
eland h at, both ends of t,he truncat#ed pipe. In this way a 
mesh code can be construct,ed with given k and the solut.ion 
for & and ,i?, obt,ained numerically. 

The program SUPERFISII[3] has been adapted to t,he 
calculation of the longitudinal coupling impedance for 
an obstacle of azimuthal symmetry[4]. Clearly one can 
similarly adapt programs like TJRMEL and MAFIA[S] 
to calculate the transverse coupling impedance and the 
impedances of azimuthally asymmetric obstacles if desired. 

The above method appears to be somewhat superior to 
that used in time domain codes to calculate the wakefields, 
followed by a Fourier transform to obtain the impedances. 

III. RESISTIVE WALL IMPEDANCE 

lrol*z,,(k) = - /~sE,H;, = -3% 
27ra . 

(21) 

hole hole 

For holes whose dimensions are small compared to the 
wavelength, the integral can be expressed in terms of the 
fields El,. , HI@ near the hole and the electric polarizability, 
x, and magnetic susceptibility, 4, of the hole. Specifically, 
we find 

Z,,(k) jk 
- = g--J-# - Xhnside, zo (22) 

where $ and x here are the “inside” susceptibility and 
polarizability for a wall of finite thickness[8]. 

It should be noted that the impedance in Eq. (22) is 
inductive, implying no energy loss by radiation through 
the hole. This radiation is proportional to the square of 
the induced dipole moments of the hole, and therefore to 
$” and x2. The real part of the impedance of a small hole 
is therefore much smaller than its imaginary part. 

The result for the transverse impedance is obtained in 
an analogous way, using Eqs. (12)-(14), and is 

Equation (5) can be used directly to calculat,e bot,h the lon- 
Z,(k) .cos* 0 

gitudinal and t,ransverse resist,ive wall impedances. Specif- 
- = 32*2n4(+ - Xhnside, 

zo 
(23) 

ically, subscripts 1 and 2 denotes the pipe wi(#h infinite and where 0 is the azimuth of the hole measured from the E- 
finite wall conductivity respectively. Therefore t,lle term in axis. 
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V. FIELD MATCHING 

The impedance of a pill-box has been calculated by many 
authors using field maching techniques either at the axial 
locations of the sides of the pill-box[9] or at the inside 
radius of the beam pipe[lO]. In either case, results are 
obtained by expanding the fields into a complete set of 
functions in either z or r, matching coefficients in the two 
regions, truncating the resulting set of matrix equations, 
and solving for the coefficients by matrix inversion. Results 
have been given for a variety of parameters (pill-box radius 
and length) as a function of frequency. 

Similar field matching techniques also work for rectan- 
gular irises[l l] (pill-b oxes extending inside the beam pipe 
radius). Since the driving current on axis is proportional 
to exp(-jkz) = cos kr - j sin kz, the problem is simplified 
by obtaining results for an even driving current (cos kz) 
and an odd driving current (-jsin kr) separat#ely. In each 
case the fields are expanded wit,11 appropriate z symmetry 
into a set of Bessel functions in both the pipe regious and 
the iris region. One set of coefficients can be eliminated by 
matching the fields at the axial location of the end of the 
iris, and the solution is then obtained by truncating aud 
inverting the resulting matrix equations. (Our experience 
is that the numerical work is more convergent if t.he final 
matrix is obtained in terms of the coefficients in the iris 
region .) 

VI. INTEGRAL EQUATION METHOD 

We here consider an azimuthally symmetric obst.acle which 
does not extend inside the beam pipe radius, and represent 
the field E, for r 5 a as 

E,(r, z; k) = J co dq e-jqz.A(q)?!?!?!? (24) 
-lx3 Je(1ia) ’ 

where K* z k* - q* and where the cont80ur in t,he q plane 
goes below any poles on the negative real axis and above 
any poles on the positive real axis[lO]. This choice of con- 
tour guarantees that. the obstacle will only creat,e outgoing 
waves in the beam pipe. The driving fields are those in Eq. 
(1) for 21 = 91 = 0. It is easy to show that the longitudinal 
impedance defined in Eq. (2) becomes 

Here /Q(Z) = hf)(a,z) is the normalized azimuthal mag- 
netic field in the Ph cavity mode with frequency klc/2r. 
Equating the magnetic field in the opening, we then obtain 

J d.z’F(r’)[K;,(t, 2’) + K,(z, z’)] = je-jkz, (33) 

where F(Z) = -ka”f(t)/ZoIo and 

Z,,(k)/Z, = (yka*) / dztyz)ejkt. (34) 

Z,,(k) = -sA(k) = -& J dzE,(a, z;k)@‘, (25) 
We therefore need to solve the integral equation [Eq. (33)] 
for F(z) and obtain Z,,(k) from Eq. (34). 

where the second form is obtained from the Fourier trans- 
form of Eq. (24) t a r = a, and where t,he integral over 
.z extends only over the obstacle (pill-box) region. This 
equation corresponds direct.ly to t,he more general result in 
the second form of Eq. (5). 

The azimuthal magnetic field at. t,he pipe radius can be 
written as 

Expanding the ratio of Bessel functions in terms of the 
residues at the zeros of Jo(Ka), we can write 

(27) 

where Jo(p,) = 0 and b: = k*a* - pz. Writing 

A(q) = & J dz’e+f(z’), (28) 

where f(z’) = E, ( a, t’; k) is the axial electric field in the 
opening, we can perform the integral over q by properly 
closing the contour for z > z’ and .z < z’, and obtain 

ZOIO -jkz 
ZoHe(a, z; k) = -e 

27ra 
- $f /dr~~(zy--p~z, z’), 

(29) 
where the pipe kernel is 

Iip(z, =,) _ 2: 2 e+~~mz’lla~ 

s=l 
s 

(30) 

When bf is negative, b, = -jp,, with ps = (pz - k2a2)‘/*. 
We must now write t’he fields inside the obstacle in terms 

of E, at r = a. This can be done by expanding the fields 
in the cavity-like obstacle (shaped like a torus) into a com- 
plete set of cavity modes. In this way we find 

ZoHo(a, z; k) = g J dzlf(tt)K,(z, t’>, 
where the cavity kernel is 

(31) 

&(T, z’) = 4$ c y:)hy~ 
e e 

(32) 

VII. IMPEDANCE OF A SMALL OBSTACLE 

For an obstacle of outer radius b extending from .Z = 0 to 
z = g, with kg < 1, k(b - a) < 1, we can obtain approx- 
imate values for A’,(,-, 2’) and Kc(=, 2’). Specifically, the 
pipe kernel is 

ZoHe = Z&e-jk2 O” 
+ J dqe-+P jko J1 (/<a) 

&a --co 
Iia Jo(Iial A(q). (26) ‘ha = % 

3221 
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where S is the largest value of s for which ps 5 ka, and 
where S,,, N a/g is a logarithmic cutoff needed in the 
second sum. The cavity kernel is dominated by the mode 
with kl = 0, for which 

and is 

ho(r) 21 [2nga(b - u)]- l/2 
(36) 

I<, 21 
2a 

ga(b - u) . (37) 

Using these values of I<,, and K,, we can obtain s dz’F(z’) 
from Eq. (33) and are led to the following expression for 
the admittance 

‘0~1 ck) = 2*ka j 
- kzg(b _ u) 

(38) 
where the exponential cut-off factor and the third term 
come from a more careful treatment[12] of the divergent 
term in Eq. (35). Numerical simulations agree very closely 
with the result in Eq. (38) for b = 1.1 a, g = 0.05 a.[121 
Moreover, the corresponding results for the impedance 
agree very well with the series calculat.ion of Henke.[lO] 

The result in Eq. (38) is dominat,ed at. low frequency 
by the first term, which is inductive. Clearly the second 
and third terms provide both an increasing capacitive term 
and resistive term as the frequency increases. In fact, the 
familiar broad resonance occurs when t,he inductive and 
capacitive contributions cancel. 

Another interesting feat.ure of Eq. (38) is it,s simplicity 
when expressed as an admittance. In fact the real part is 
independent of all features of t,he pill-box for y < a. It is 
not hard to show that this t,erm corresponds to t#he energy 
which is lost as the pill-box grnera.tes out,going propagat,ing 
modes in the pipe. Apparently the reactive part, arises from 
the evanescent pipe modes generat.ed by the pill-box. 

i 

0, z’ > z 
< k&z’) >2: j-1 112 t (44) 

a I I +ij > z’<z I 

where we have converted the sum over s to an integral. 
The evaluation of the cavity kernel for large ka depends 

on the cavity geometry, but in the form in Eq. (32), the 
sum over modes can be approximated by an integral over 
mode number. This has been done for a pillbox, as well 
as for several obstacles of triangular cross section and, the 
results suprisingly depend only on (z - z’). In fact the 
cavity kernel cont,ribution turns out to be exactly the same 
as that in Eq. (44) for t,he pipe kernel. Thus the integral 
equation reduces to 

J a dz’G(z’) - (1 - j)v’% 
adz- 2 ’ 

whose solution is 

VIII. IMPEDANCE AT HIGH FREQUENCY leading to the impedance 

The high frequency behavior of the impedance has been 
of concern since Lawson’s diffraction calculation[l3] sug- 
gested a k- ‘1’ behavior which, according to Eq. (7) im- 
plied an infinite energy loss. This k-‘l’ behavior (which 
does not violate energy conservation when we have an ul- 
trarelat,ivisit,ic particle of infinite energy) was confirmed 
by others[l4, 151. Th e integral equation of Sect,ion VI is a 
convenient starting point for t,his calculation. 

We write Eqs. (33), (34) for a pill-box as 

Numerical result,s for the impedance are consistent with 
the km1i2 average behavior of the impedance, but show 
a persistent oscillation with frequency as well, suggesting 
some sort of resonant field behavior within the pillbox. 

J 

9 
dz’ G(z’)[kp(z, z’) + Z<,(z, z’)] = 2Kj/u (39) 

0 

IX. IMPEDANCE OF MANY OBSTACLES 
AT HIGH FREQUENCY 

with F(z) = (a/27r)e-jkzG(z), and have 

J 
Y 

Z,,(k)/& = (1/27rka) dz G(z). (40) 
0 

We now apply Eq. (39) to a beam pipe containing a large 
number of obstacles, and assume that they are all identical 
and separated from each other (center to center) by a con- 
stant distance L. Specifically we write the coupled system 
of integral equations 

Here 
I?&&, 2’) = ejk( z-z’)Ii-p,c(:’ 2’). (41) CJ dz;, G(z:,,)[~,(z,,z:,)+6,,,I;‘,(z,, z:,)] = j, (48) 

m 

Clearly the impedance arises from the smooth part of G(z), 
which itself will come from the smooth part of the kernel 
in Eq. (39). Writing 

k,(z,z’) = 2=j/a~exp(j$,)j(k’~2 -pf)‘/‘, (42) 
s=l 

where 

I,+~ = k(r - 2) - 1.z - z’l(k’ - ~;/cz~)“~, (43) 

we see that there are rapid oscillations everywhere except 
near p, < ka for z > z’. Expanding (k2a2-pf)‘j2 for small 
p,/ka, and keeping only the lowest order non-vanishing 
term in the esponent, we obtain for the average of the 
smoothed pipe kernel 

(45) 

(47) 
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where we recognize that only the mlh cavity contributes to 
the cavity kernel for the purpose of matching the magnetic 
field at the rnlh cavity. 

If we use the asymptotic values for r?p and I\‘, obtained 
in the last section and approximate I;‘>,(z,,. r:,,) for off- 
diagonal (n # m) terms as its value when z,%, thl corre- 
spond to the center of the relevant gaps, we can sol,ve Eq. 
(48) and obtain the following expression for the ndlnilla?rce 
per cavity [ 161 

NZoYjj(k) N PO(L) + odmtan-l(*/2fi), (49) 

where Fc(k)/Zc is the admittance of a single cavity and 

0 = (1+ j)uq%qz. (50) 

Once again we have a term independent of the cavity pa- 
rameters (g, b - u) which is added to the admittance. 

In the limit of large L with finite II’, we hnd 

NZ(l~](k) N (1+ j)sa~[l + &g-E] (51) 

suggesting that the impedance is proportional to N1/’ 
(rather than N) for Ng >> L. This shadowing effect was 
first suggested by Palmer[l’i]. 

If we t,ake the limit for la.rge N wit.11 finit,e k, we find 

NZoYil(k) N Fe(k) + jiru’b/L. (52) 

which is the result for a periodic struct,ure. For large /c 
the imaginary second term dominates. Using the single 
pillbox impedance in Eq. (47) we obtain an approximate 
result which shows that real part of the impedance goes as 
Le3j2, a result also obtained by ot~hers[ll]. 

The result in Eq. (52) can also be shown t,o apply to 
the case of a small obstacle for the paranieter range ha > 
1, /zL > 1, as long as bg < 1, k(6 - u) < 1. Specifically 
we use the result in Eq. (38) for Fe(k), the admit,tance 
of a single obstacle. We also believe, alt~hough it, has not- 
yet been proved, that the same result holds for a periodic 
array of holes distributed uniformly in azimut.11 at axial 
positions separated by L. In t,his case Fe(k) iii Eq. (52) is 
to be taken as the reciprocal of Eq. (22). Equation (52) 
is then expected to be valid as long as t,he wave1engt.h is 
small compared with a and L, and large compared wit,11 
the hole dimensions. In all likelihood, it. would be valid 
for wavelengths comparable with or smaller t,han the hole 
dimensions if we used a single hole impedance valid in this 
parameter range. 

X. SUnlMc\RY 

We have outlined several alterna.te met,hocls of calculat- 
ing the impedance of an obst.acle (pillbox, hole) in a beam 
pipe and illustrated the techniques in several a.pplications. 
The selection is naturally guided by persoiial t,aste. Nev- 
ertheless there are other techniques often used which offer 
comparable insights and results. 
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