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Abstract

We present several analytic techniques to calculate the
impedance of an obstacle in a beam pipe in a variety of
applications.

I. INTRODUCTION

In the present paper we shall review methods of calculat-
ing the longitudinal and transverse coupling impedances
of an obstacle (e.g. pillbox, hole) in a beam pipe of radius
Q for a point charge traveling at ultra-relativistic speeds
(8 ~ 1,7 > 1). Since the coupling impedance is the fre-
quency domain equivalent of the wakefield written in the
time domain, the drive current in the frequency domain
has a sinusoidal dependence on z of the form

J:(z,y,2; k) = Ib(z — 21)6(y — y1) exp(—jkz), (1)

where k = w/c and where the time dependence is exp(jwt).
Here the point charge travels in the z-direction with con-
stant offset z = z1,y = y1. The definition of the longitu-
dinal coupling impedance is then

Z(k) = —-1-/ dz E. (21,1, 2;k)el*?
In J_o

1 . -
——— | dv E-J* 2
|[0|2/ v ()

where the volume integral is a more general form which will
also be used in the transverse impedance. The longitudinal
impedance is obtained by setting z; = y; = 0.

We now consider two situations. The first, denoted by
the subscript 1, is the lossless pipe and the second, denoted
by 2, is the pipe with the obstacle. We then construct

P20 + 200 = - [ vl T+ Er- ) )

where Zl(ll)(k) is imaginary. (It actually vanishes in the
ultrarelativistic limit.) Using

f: AVAP ﬁLg - jWCE-"lyg, V x E-:Lg = -—jwpﬁl,% (4)
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Eq. (3) can be converted to a surface integral, leading to[1]

Lo 2y (k) = /ds2 i Bt x Iy = /dSl Ry By x AT, (5)

52#85, S1#8;

where the first integral is over the surface of the obstacle
different from the beam pipe and where the second integral
is over the surface at » = a which is different from the
obstacle. For z; = y; = 0, the solution for E} and ﬁl In
the ultrarelativistic limit is

Ey =2ZoHyg =

Zoly . .
oy exp(—jkz), Ey, =0. (6)
Thus we need to solve Maxwell’s equations for Eg, ﬁg, with
the drive beam given in Eq. (1), and use Eq. (5) to calcu-
late the longitudinal impedance.

The encrgy loss of the particle traveling past an obstacle
can be obtained directly from the real part of the longitu-
dinal coupling impedance. Specifically it is

N I I* oQ
AW = %/0 dk Re Zy(k), (7)
where we have used Zj(—k) = Z’T(k). Contributions to
AW can come from wall losses, energy radiation to the
outside through the obstacle, and generation by the obsta-
cle of outgoing propagating modes in the pipe.

The transverse coupling impedance can be analyzed sim-

ilarly. Starting with the axial dipole drive current

Jo = Ib(y)[6(x — 1) — 6(z + z1)]exp(—jkz),  (8)

the transverse impedance can be expressed as the limit for
small z1 of

Zo(k) = ! / d:0Ez ciks, 9)

_2k10$1 6x

-0

Writing the derivative with respect to = as the difference
for ¢ = +x; divided by 2z,, we find

Zg(k) = ———/dzEzl,O,
(k) Ty | lE.0.9

- Ez(-xl,O,z)]ejk‘. (10)
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Using the drive current in Eq. (8), the transverse
impedance can be written in terms of the same volume
integral as before, namely

1 =

As before the volume integral can be converted to a surface
integral, leading to[2]

akz?|Io|? = /dsgﬁz-ﬁfxﬁz = /dSlﬁl-ngﬁf. (12)

SQ¢51 S #SQ
In this case, for small z,

E) = —exp(—jk2)Vi¢y, ZoH, = 3x Ey,

Z()Io (1 7’)
zycosf | —— —
T r

(13)

where

é1(r,0) = (14)

a?

satisfies the boundary condition ¢;{a,#) = 0 at the beam

pipe radius = a¢. Here # is a unit vector in the z-direction.
In the sections that follow we will apply the formulation

outlined above to a variety of different problems.

II. NUMERICAL CALCULATION

For an arbitrary obstacle, the fields Eg and ﬁg can be
written as

EZ=El+g: ﬁ2=}?1+5y (15)

where the fields € and A now satisfy Maxwell’s equations
with no drive current, and the boundary condition along
the metallic walls of the pipe and obstacle is

flg X &€= —fly x Ej. (16)
Furthermore one can consider only a finite section of the
beam pipe and apply an outgoing boundary condition to
& and k at both ends of the truncated pipe. In this way a
mesh code can be constructed with given k and the solution
for Eg and f?g obtained numerically.

The program SUPERFISH[3] has been adapted to the
calculation of the longitudinal coupling impedance for
an obstacle of azimuthal symmetry[4]. Clearly one can
similarly adapt programs like URMEL and MAFIA[f]
to calculate the transverse coupling impedance and the
impedances of azimuthally asymmetric obstacles if desired.

The above method appears to be somewhat superior to
that used in time domain codes to calculate the wakefields,
followed by a Fourier transform to obtain the impedances.

III. RESISTIVE WALL IMPEDANCE

Equation (5) can be used directly to calculate both the lon-
gitudinal and transverse resistive wall impedances. Specif-
ically, subscripts 1 and 2 denotes the pipe with infinite and
finite wall conductivity respectively. Therefore the term in
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E{ vanishes, and we can express E5, in terms of Hyy and
the surface impedance. Specifically

Ey, =~ —(14j)(kZ06/2)He, (17

where Zy = 377 ohms is the impedance of free space and §
is the skin depth of the wall material at frequency kec/2r.
Thus the impedance per unit length is given by

LlPZRY = (1+ j)(kZ06/2) f ds|Hyl?,  (18)

where the line integral is over the circumference of the
beam pipe. Using Eq. (6) we find for a length of pipe 27R
Z" (14 j)kéR §

= = (1 ) ) —
Zo %a (T+i)g.m

where the second form in terms of » = kR, the harmonic
of the rotation frequency in a circular accelerator, is the
one usually used.

The corresponding analysis for the transverse impedance
for a pipe length 27 R, using Egs. (12)-(14), leads to

ZRW
Zo
These results, first obtained by Nielsen, Sessler, and

Symon[6], have been extended to pipes of rectangular[7, 2]
and elliptical[2] cross section.

(19)

=0+ (20)

IV. IMPEDANCE OF HOLES

Equation (5) is also a natural starting point to calculate
the impedance of a small hole in a beam pipe. Taking the
integral over the inside surface of the beam pipe we have
Z
2

o2 (k) = - /dSE',,Hfa =—
hole

I :
%0 ]dSEzesz. (21)
Ta

hole

For holes whose dimensions are small compared to the
wavelength, the integral can be expressed in terms of the
fields £, H1g near the hole and the electric polarizability,
X, and magnetic susceptibility, ¢, of the hole. Specifically,
we find
Zy(k)  jk

Zy  8mla?
where 4 and x here are the “inside” susceptibility and
polarizability for a wall of finite thickness[8].

It should be noted that the impedance in Eq. (22) is
inductive, implying no energy loss by radiation through
the hole. This radiation is proportional to the square of
the induced dipole moments of the hole, and therefore to
¥? and x2. The real part of the impedance of a small hole
is therefore much smaller than its imaginary part.

The result for the transverse impedance is obtained in
an analogous way, using Eqgs. (12)-(14), and is

Ze(k) _ .cos’f,
Zo "4 (¥ = X)inside,

where 6 is the azimuth of the hole measured from the z-
axis.

(¢ - X)inside: (22)

(23)
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V. FIELD MATCHING

The impedance of a pill-box has been calculated by many
authors using field maching techniques either at the axial
locations of the sides of the pill-box[9] or at the inside
radius of the beam pipe[10]. In either case, results are
obtained by expanding the fields into a complete set of
functions in either z or r, matching coefficients in the two
regions, truncating the resulting set of matrix equations,
and solving for the coefficients by matrix inversion. Results
have been given for a variety of parameters (pill-box radius
and length) as a function of frequency.

Similar field matching techniques also work for rectan-
gular irises[11] (pill-boxes extending inside the beam pipe
radius). Since the driving current on axis is proportional
to exp(—jkz) = coskz — jsin kz, the problem is simplified
by obtaining results for an even driving current (cos kz)
and an odd driving current (—jsin kz) separately. In each
case the fields are expanded with appropriate z symmetry
into a set of Bessel functions in both the pipe regions and
the iris region. One set of coefficients can be eliminated by
matching the fields at the axial location of the end of the
iris, and the solution is then obtained by truncating and
inverting the resulting matrix equations. (Our experience
is that the numerical work is more convergent if the final
matrix is obtained in terms of the coefficients in the iris
region.)

VI. INTEGRAL EQUATION METHOD

We here consider an azimuthally symmetric obstacle which
does not extend inside the beam pipe radius, and represent
the field £, for r < a as

Jo([fr)
Jo(Ka)’

E.(r z;k) = /oo dg 79 A(q) (24)

where K? = k% — ¢% and where the contour in the g plane
goes below any poles on the negative real axis and above
any poles on the positive real axis[10]. This choice of con-
tour guarantees that the obstacle will only create outgoing
waves in the beam pipe. The driving fields are those in Eq.
(1) for z; = y; = 0. It is easy to show that the longitudinal
impedance defined in Eq. (2) becomes
Zy(k) = _?IEA(IC) = ——;-/d:Ez(a,z;k)ejkz, (25)
0 0

where the second form is obtained from the Fourier trans-
form of Eq. (24) at r = a, and where the integral over
z extends only over the obstacle (pill-box) region. This
equation corresponds directly to the more general result in
the second form of Eq. (5).

The azimuthal magnetic field at the pipe radius can be
written as

Expanding the ratio of Bessel functions in terms of the
residues at the zeros of Jo(Ka), we can write

Ji(Ka) 2 & 1
KaJo(Ka) — a? ,Z; 7% — b2/a?’ (27)
where Jo(ps) = 0 and 62 = k2a? — p2. Writing

where f(z') = E,(a,2';k) is the axial electric field in the
opening, we can perform the integral over ¢ by properly
closing the contour for z > 2’ and z < 2/, and obtain

ZOIO e~ ike _ jka ’ / '
ZoHg(a,z;k) = e —2—7r—/dz F(2NK,(z,2'),
(29)
where the pipe kernel is
i 2, e—dbilz=2'l/a
Ky(z,2) = 222 Z (30)

When b? is negative, b, = —j3,, with Bs = (p? - k:’az)l/z.

We must now write the fields inside the obstacle in terms
of E, at r = a. This can be done by expanding the fields
in the cavity-like obstacle (shaped like a torus) into a com-
plete set of cavity modes. In this way we find

ZoHo(a, 2 k) = ]'“’ /dz’f(z VKe(2,2),  (31)
where the cavity kernel is
- 2 he(2)he(2)
I\C(Z,Z/) =4r ZW (32)

[4

Here he(z) = h( )( a,z) is the normalized azimuthal mag-
netic field in the 20 cavity mode with frequency k,c/2m.
Equating the magnetic field in the opening, we then obtain

/dz'F(z')[I\"p(z, 2V + Ko(z,2)] = je 9%, (33)
where F(z) = —ka®f(2)/Z,1, and
Zy(k)/ 2o = (1/ka2)/dzp(z)ef’“. (34)

We therefore need to solve the integral equation [Eq. (33)]
for F(z) and obtain Zj(k) from Eq. (34).

VII. IMPEDANCE OF A SMALL OBSTACLE

For an obstacle of outer radius b extending from z = 0 to
z = g, with kg €« 1,k(b — a) < 1, we can obtain approx-
imate values for Kp(z,z") and K, (z,2'). Specifically, the
pipe kernel is

s Smax
—jkz oo  ika ],' ) 2 1
ZoHy = Zolge +/ dqe‘qu] aJl( \a (]) (26) [\p ~ [Z B— +7 z ﬁ (35)
2ma e KaJo(K s=1 s=S5+41 "%
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where S is the largest value of s for which p, < ka, and
where Spar ~ a/g is a logarithmic cutoff needed in the
second sum. The cavity kernel is dominated by the mode
with k; = 0, for which

ho(z) ~ [2rga(b — a)]~1/? (36)
and 1s 0
e

Using these values of I, and K., we can obtain [ dz'F(z')
from Eq. (33) and are led to the following expression for
the admittance

j T\ eIbegla 9pp2

k2g(b—a) +§ b, L b

(38)
where the exponential cut-off factor and the third term
come from a more careful treatment[12] of the divergent
term in Eq. (35). Numerical simulations agree very closely
with the result in Eq. (38) for b = 1.1 a, g = 0.05 a.[12]
Moreover, the corresponding results for the impedance
agree very well with the series calculation of Henke.[10]

The result in Eq. (38) is dominated at low frequency
by the first term, which is inductive. Clearly the second
and third terms provide both an increasing capacitive term
and resistive term as the frequency increases. In fact, the
familiar broad resonance occurs when the inductive and
capacitive contributions cancel.

Another interesting feature of Eq. (38) is its simplicity
when expressed as an admittance. In fact the real part is
independent of all features of the pill-box for ¢ € a. It is
not hard to show that this term corresponds to the energy
which is lost as the pill-box generates cutgoing propagating
modes in the pipe. Apparently the reactive part arises from
the evanescent pipe modes generated by the pill-box.

ZoY) (k) = 27ka

VIII. IMPEDANCE AT HIGH FREQUENCY

The high frequency behavior of the impedance has been
of concern since Lawson’s diffraction calculation[13] sug-
gested a k~!/2 behavior which, according to Eq. (7) im-
plied an infinite energy loss. This k~1/? behavior (which
does not violate energy conservation when we have an ul-
trarelativisitic particle of infinite energy) was confirmed
by others[14, 15]. The integral equation of Section VI is a
convenient starting point for this calculation.
We write Eqs. (33), (34) for a pill-box as

/Ug dz' G(2)[Kp(z,2") + Ke(z,2')] = 27j/a (39)
with F(2) = (a/2m)e #¥*G(z), and have
Zy(k)/Zo = (1/27ka) /Oy dz G(2). (40)
Here
Kpe(z,2') = X0, (2,2). (41)
3222

Clearly the impedance arises from the smooth part of G(z),
which itself will come from the smooth part of the kernel
in Eq. (39). Writing

fi',,(z, ') = 27|'j/aZexp(jw,)/(k'“’a2 -2, (42)

s=1
where

¥, = k(z = 2') — |z — 2'|(k* — p2/a®)}/?, (43)

we see that there are rapid oscillations everywhere except
near p, < ka for z > 2’. Expanding (k2a?—p?)'/2 for small
ps/ka, and keeping only the lowest order non-vanishing
term in the exponent, we obtain for the average of the

smoothed pipe kernel
| o

where we have converted the sum over s to an integral.

The evaluation of the cavity kernel for large ka depends
on the cavity geometry, but in the form in Eq. (32), the
sum over modes can be approximated by an integral over
mode number. This has been done for a pillbox, as well
as for several obstacles of triangular cross section and, the
results suprisingly depend only on (z —~ z’). In fact the
cavity kernel contribution turns out to be exactly the same
as that in Eq. (44) for the pipe kernel. Thus the integral
equation reduces to

“d'G(Y) (1= )k

0, 7>z
.L—_l_[ x

a k(z=2")

< Kp(z,2') >~ { ]1/2

, <z

~ , 45
0 Vz—2' 2 (45)
whose solution is
1—-5 [k
G(z) ~ —, 4
(=) 2a Tz (46)
leading to the impedance
Zy(k 1—3j
1) J /9 (47)

= 9ma \ 7k

Zy

Numerical results for the impedance are consistent with
the k~1/2 average behavior of the impedance, but show
a persistent oscillation with frequency as well, suggesting
some sort of resonant field behavior within the pillbox.

IMPEDANCE OF MANY OBSTACLES
AT HIGH FREQUENCY

IX.

We now apply Eq. (39) to a beam pipe containing a large
number of obstacles, and assume that they are all identical
and separated from each other (center to center) by a con-
stant distance L. Specifically we write the coupled system
of integral equations

Z/d:;n G(z:n)[Kp(zm Z:n)+5nlnI§’c(Zm z:n)] = j, (48)
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where we recognize that only the m** cavity contributes to

the cavity kernel for the purpose of matching the magnetic
field at the m** cavity. _

If we use the asymptotic values for I{'p and K, obtained
in the last section and approximate IA\"p(zn,z,’n) for off-
diagonal (n # m) terms as its value when z,, 2}, corre-
spond to the center of the relevant gaps, we can solve Eq.
(48) and obtain the following expression for the admiitance
per cavity[16]

NZOYII(/C) ~ Folk)+ aV'N — lta“_l(ﬂﬂﬁ)’ (49)

where Fo(k)/Z, is the admittance of a single cavity and

o= (14 j)a/7k/L.

Once again we have a term independent of the cavity pa-
rameters (g, b — a) which is added to the admittance.
In the limit of large k& with finite N, we find

NZoY)(k) = (1 + j)ma/7k/g[l + /g N/4L]

suggesting that the impedance is proportional to N1/2
(rather than N) for Ng > L. This shadowing effect was
first suggested by Palmer[17]}.

If we take the limit for large N with finite &, we find

(50)

(51)

N ZoY) (k) =~ Fo(k) + jaa®k/L. (52)
which is the result for a periodic structure. For large &
the imaginary second term dominates. Using the single
pillbox impedance in Eq. {47) we obtain an approximate
result which shows that real part of the impedance goes as
k=3/2 a result also obtained by others[18].

The result in Eq. (52) can also be shown to apply to
the case of a small obstacle for the parameter range ka >
1,kL > 1, as long as kg < 1,k(b — a) < 1. Specifically
we use the result in Eq. (38) for Fy(k), the admittance
of a single obstacle. We also believe, although it has not
yet been proved, that the same result holds for a periodic
array of holes distributed uniformly in azimuth at axial
positions separated by L. In this case Fy(k) in Eq. (52) is
to be taken as the reciprocal of Eq. (22). Equation (52)
is then expected to be valid as long as the wavelength is
small compared with @ and L, and large compared with
the hole dimensions. In all likelihood, it would be valid
for wavelengths comparable with or smaller than the hole
dimensions if we used a single hole impedance valid in this
parameter range.

X. SUMMARY

We have outlined several alternate methods of calculat-
ing the impedance of an obstacle {pillbox, hole) in a beam
pipe and illustrated the techniques in several applications.
The selection is naturally guided by personal taste. Nev-
ertheless there are other techniques often used which offer
comparable insights and results.

References

[1] R.L. Gluckstern and F. Neri, IEEE Trans. Nucl. Sci.
NS-32, 2403 (1985).

[2] R.L. Gluckstern, J.B.J. van Zeijts and B. Zotter,
Phys. Rev. E 47, 656 (1993).

i3] K. Halbach and R.F. Holsinger, Particle Accelerators,
7, 213 (1976).

[4] R.L. Gluckstern and F. Neri, Proceedings of the Par-
ticle Accelerator Conference, Washington, DC, March
1987, p. 1069.

[6] T. Weiland, Nuclear Instruments and Methods, 216,
329 (1983); T. Weiland et. al., DESY Report M-86-07,
June 1986.

[6] C.E. Nielsen, A.M. Sessler, and K.R. Symon, Proceed-
ings of the International Conference on High Energy
Accelerators, CERN, 1959, p. 239.

[7] V.K. Neil and A .M. Sessler, Rev. Sci. Instrum. 36, 429
(1965); L.J. Lalett, V.K. Neil and A.M. Sessler. Rev.
Sci. Instrum. 36, 436 (1965).

[8] R.L. Gluckstern and J.A. Diamond, IEEE Trans. Mi-
crowave Theory Tech. 39, 274 (1991).

[9] See, for example, E. Keil and B. Zotter, Particle Ac-
celerators 3, 11 (1972).

[10] See, for example, H. Henke, CERN Report-LEP-
RF/85-41.

[11] See, for example, R.L. Gluckstern and W.F. Detlefs,
Proceedings of the Particle Accelerator Conference,
San Francisco, CA, May 1991, p. 1600.

[12] R.L. Gluckstern and F. Neri, Proceedings of Particle
Accelerator Conference, Chicago, IL, March 1989, p.
1271.

[13] J.D. Lawson, Rutherford High Energy Laboratory,
Report No. RHEL/M144 (1968).

[14] See, for example, G. Déme, IEEE Transactions in Nu-
clear Science, NS-32, 2531 (1985); S. Heifets and S.
Kleifets, Particle Accelerators 25, 61 (1990).

[15] R.L. Gluckstern, Phys. Rev. D, 39, 2773 (1989).

[16] R.L. Gluckstern, Proceedings of the Particle Acceler-
ator Conference, Chicago, IL, March 1989, p. 1157

[17] R.D. Palmer, A Qualitative Study of Wakefields for
Very Short Bunches, SLAC Report SLAC-PUB-4433,
October 1987.

(18] S. Heifets and S. Kheifets, Phys. Rev. D39, 3960
(1989).

3223

PAC 1993



