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Abstract

A magnet sorting procedure for accelerators is developed.
It is implemented in two steps. The first step is completely ana-
lytical in character while the second step involves the compari-
son of computed values with the measured error values. The
method has been implemented for sorting the Advanced Photon
Source (APS) injector synchrotron dipoles and quadrupoles
with excellent results.

1. INTRODUCTION

Suppose we are given a set of magnets whose magnetic
field errors have been measured. Then the question arises
whether there is some optimal way of placing them around the
accelerator ring to minimize the effect of the magnetic field
erTors.

One of the simplest ways to answer this question is to try
all possible permutations of the known errors on the magnet
locations and choose the combination which produces the mini-
mum effect. However, the number of combinations grows as n!,
where n is the number of magnets to be sorted.

In the past, another method has been used for the simulated
errors which, for lack of a better name, we will call the “Main
Harmonic Cancellation Method” (see Lopez [1]). The idea of
this method is as follows. Let us say we want to sort dipole mag-
nets on dipole errors. The magnets of equal strength are
selected and placed n radians apart in phase of the particle tra-
jectory so that the equal strength errors make equal but opposite
contributions to the particle trajectory.

Sometimes the method of simulated annealing may be used
for sorting. This method, also used in simulation for sorting the
injector synchrotron dipoles over simulated errors, gave a slight
improvement over the Main Harmonic Cancellation Method
when used in simulation for the APS injector synchrotron (see
Sampson [2]). For details see Kirkpatrick [3] or Flannery[4].

. OPTIMAL PROCEDURE

The new sorting procedure is based on solution of the linea-
rized equations of motion. For details see Koul 5] ar Courant
{6]. The solution characterizing the effect of errors is given by
amplitude function I expressed below.

1= CZ; H(B.L) H(B, L) ff,cosy,, (1)
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H(B;, L) is some function of §; and L;, where B;and L; are
the beta function of the beam at the ith element and the length
of the ith element respectively; fj is the measured error at the ith
location; and y;; = (¢—¢;) is the phase difference of the tra-
jectory between the ith and the jth locations phases ¢; and ¢,

The optimal procedure has two steps. In the first step a cer-
tain linear set of equations has to be solved, and in the second
step some matching of the calculated and the measured values
has to be performed. The first step can be carried out in either
of two ways. Both ways are outlined below under the headings
“Procedure 1” and “Alternate Procedure 1.”

III. STEP 1 (PROCEDURE 1)

Suppose we minimize function I with respect to the phase
differences v;;, thereby considering the 1;; as variables. Hav-
ing obtained the equations from variation of I with respect to
1;;, we ask another question: What values should f;, (i.e errors)
assume, such that the given 1;; satisfy the variational equa-
tions? If we answer this question, then we have found that for
the calculated values of f;, given ;; minimize the amplitude
function I. However, it is important to point out the following.

Notice that for i#j, P;; = —y;; and ¢;; = 0. We are left
with only n (n - 1) /2 variables, but all of these n (n — 1) /2, V;;
are not linearly independent. Since we are dealing with the
phase differences, we can fix a position, say position number
‘1’, and compute ¢;; for all j#1, out of the total of n (n - 1) /2,
Y;; Then it is easy to see that for alliand j, ¢;; = ¢, 0,
Hence for ‘n’ positions corresponding to the ‘n’ magnet, there
are only (n-1) linearly independent y,;. Therefore, to mini-
mize I with respect to the phase differences we will give varia-
tions only with respect to v, ;. Carrying out the variation and
assuming that at least one of the errors, say f}, is known we get,

it

i

H(B;, L)f, siny, ; = H(B,,L)f, siny,,,

€3
i=2
which can be formally written as a matrix equation:
> Myf; = HB, L) sings. 3
i=2
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to remember thaL the calculated values (fy, ..., f;,) will be differ-
ent from the actual measured values in the magnets. However
we will delay the discussion of this point.

IV. STEP 1 (ALTERNATE PROCEDURE 1)

We assume that at ieast one of ihe errors is known and is
different from zero. We next consider the rest of the fj as vari-
ables and take the derivative of the amplitude function I with
respect to these f;'s. Let us assume that we know the value of

the first error. Then = ( is a set of linear equations whose

6fk
solution, in terms of the known phases and the known errors,

gives the set of unknown errors whose placement at the corre-
sponding phases would minimize I Carrying out the above
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derivative and rearranging the terms, we get for allk, k=(2, ...,
n),

W
=1

H(B;, Lfjcosy,; = —H(B,, Lf; cosypy,. )

W
)

i

Comments similar to ones made in “Procedure 1” are valid
for this alternate procedure.

V. STEP 2

Having solved the set of linear equations obtained from one
of the above procedures, we ask how does this information get
translated into the placement of the measured error values. It
was answered in the following way. We ordered the measured
error values and compared the largest measured error value to
the calculated values. The measured error was placed in the
position of its closest calculated value. Starting from the largest
absolute error value we worked our way through towards the
smallest error®. In this way we associate the measured errors
with a position in phase.

VI. IMPLEMENTATION OF THE
OPTIMAL PROCEDURE

We simulated 45 machines for the dipole errors in dipoles
for the APS injector synchrotron. Figure 1 shows the sample
random distribution functions used in the simulation. Figures
2 and 3 show the frequency with which the amplification factor
I was improved in each machine, over the randomly placed
dipoles and quadrupoles, respectively.

1Tt may be pointed out that it is not necessary to specify only one of the
unknowns to start. We can specify more than one measured value at dif-
ferent positions and solve for the remaining ones in terms of the known
quantities.

2 Even though we formally have (n—1) linearly independent equations in
Eq. (2), it may still be that a set of equations is not linearly independent
by virtuc of the coefficientof the matrix My j vanishing for certain values.
3 Note that as we go from the largest value to the smaller values the num-
ber of choices for measured error to be placed keeps decreasing. Inpartic-
ular, the last measured error has only one place to go. Therefore, this may
not be an optimal way to relate measured values to the calculated values.
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The only comment in favor of this procedure is that it worked extremely
well for the simulations run with simulated random errors used for the
APS injector synchrotron dipole and quadrupole errors.
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The frequency distribution of the amplification factor for
sorted and random machines is shown in Figure 4. Figure 5 is
a similar plot, but here both sets in the plot refer to the amplifi-
cation factors obtained after sorting. One corresponds to sort-
ing 68 dipoles at a time and the other corresponds to sorting 34
magnets at a time.
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Figure 6 shows the dependence of the result of sorting on
the number of magnets sorted at a time. One can easily see that
the larger the number of magnets sorted at a time the lower the
amplification factor obtained. Figure 6 also shows the mean
and the minimum 1, 400

the mean 1,40, much larger than any of the sorted I,..., but

One can easily see that not only is

the minimum /1,4, out of 45 random machines is much larger

is for the gain factor, defined as /I, ,4om/Lionea: a8 @ function of

the number of dipoles sorted.
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than the sorted /I, as long as the number of magnets sorted  {6]
is at least 18. Figure 7 shows the same result, but here the plot
2926
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