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Abstract 

A magnet sorting procedure for accelerators is developed. 
It is implemented in two steps. The fust step is completely ana- 
lytical in character while the second step involves the compari- 
son of computed values with the measured error values. The 
method has been implemented for sorting the Advanced Photon 
Source (APS) injector synchrotron dipoles and quadrupoles 
with excellent results. 

I. INTRODUCTION 
Suppose we are given a set of magnets whose magnetic 

field errors have been measured. Then the question arises 
whether there is some optimal way of placing them around the 
accelerator ring to minimize the effect of the magnetic field 
errors. 

One of the simplest ways to answer this question is to try 
all possible permutations of the known errors on the magnet 
locations and choose the combination which produces the mini- 
mum effect. However, the number of combinations grows as n!, 
where n is the number of magnets to be sorted. 

In the past, another method has been used for the simulated 
errors which, for lack of a better name, we will call the “Jvlain 
Harmonic Cancellation Method” (see Lopez [II). The idea of 
this method is as follows. Let us say we want to sort dipole mag- 
nets on dipole errors. The magnets of equal strength are 
selected and placed n radians apart in phase of the particle tra- 
jectory so that the equal strength errors make equal but opposite 
contributions to the particle trajectory. 

Sometimes the method of simulated annealing may be used 
for sorting. This method, also used in simulation for sorting the 
injector synchrotron dipoles over simulated errors, gave a slight 
improvement over the Main Harmonic Cancellation Method 
when used in simulation for the APS injector synchrotron (see 
Sampson [2]). For details see Kirkpatrick [33 or Flannery[4]. 

II. OPTIMAL PROCEDURE 
The new sorting procedure is based on solution of the linea- 

rized equations of motion. For details see Koul[5] or Courant 
[6]. The solution characterizing the effect of errors is given by 
amplitude function I expressed below. 

i=n j=n 

I = C r. ~, H(Pi.Li) H(fij, L,) f,f;COS ~ij. (1) 
i=l j=l 

* Work supported by U.S. Department of Energy, Office of Basic 
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H(fliv Li) is some function of pi and Li. where Bi and b are 
the beta function of the beam at the ith element and the length 
of the ith element respectively; fi is the measured error at the ith 
location; and vij = (~~j) is the phase difference of the tra- 
jectory between the ith and the jth locations phases I& and ~j. 

The optimal procedure has two steps. In the fist step a cer- 
tain linear set of equations has to be solved, and in the second 
step some matching of the calculated and the measured values 
has to be performed. The first step can be carried out in either 
of two ways. Both ways are outlined below under the headings 
“Procedure 1” and “Alternate Procedure 1.” 

III. STEP 1 (PROCEDURE 1) 

Suppose we minimize function I with respect to the phase 
differences ~ij, thereby considering the ~ij as variables. Hav- 
ing obtained the equations from variation of I with respect to 
vij. we ask another question: What values should fi, (i.e errors) 
assume, such that the given qij satisfy the variational equa- 
tions? If we answer this question, then we have found that for 
the calculated values of fi, given 9ij minimize the amplitude 
function I. However, it is important to point out the following. 

Notice that for i#j, vii = -qji and vii = 0. We are left 
with only n (n - 1) /2 variables, but all of these n (n - 1) /2, ~ij 
are not linearly independent. Since we are dealing with the 
phase differences, we can fix a position, say position number 
‘l’, and compute ~ij for all j#l, out of the total of n (n - 1) /2, 
~ij. Then it is WSY to see that for all i and j, cpij = Cp,,&, + 
Hence for ‘n’ positions corresponding to the ‘n’ magnet, there 
are only (n-l) linearly independent qlj. Therefore, to mini- 
mize I with respect to the phase differences we will give varia- 
tions only with respect to q, j. Carrying out the variation and 
assuming that at least one of the errors, say ft. is known we get, 

i=n 
c WBieL,)fivsinV,i = H@,.LJfl sin&,, (2) 
i=2 

which can be formally written as a matrix equation: 

i=o 
c Mkifi = WPlrWfl sin%,. 
i=2 

(3) 
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The Eq. (2)‘. 2 is true for all k, k = (2, . . . . n). It is important 
to remember that the calculated values (f2, . . . . fr,) will be differ- 
ent from the actual measured values in the magnets. However 
we will delay the discussion of this point. 

IV. STEP 1 (ALTERNATE PROCEDURE 1) 
We assume that at least one of the errors is known and is 

different from zero. We next consider the rest of the fi as vari- 
ables and take the derivative of the amplitude function I with 
respect to these fi’s. Let us assume that we know the value of 

61 the first error. Then of, = 0 is a set of linear equations whose 

solution, in terms of the known phases and the known errors, 
gives the set of unknown errors whose placement at the corre- 
sponding phases would minimize I. Carrying out the above 
derivative and rearranging the terms, we get for all k, k = (2, . . . . 
nL 

,=Il 
c H(P,,L,)f,cosVkj = -H(Pl,L,)f,COsVkl. (4) 
j=2 

Comments similar to ones made in “Procedure 1” are valid 
for this alternate procedure. 

v. STEP 2 
Having solved the set of linear equations obtained from one 

of the above procedures, we ask how does this information get 
translated into the placement of the measured error values. It 
was answered in the following way. We ordered the measured 
error values and compared the largest measured error value to 
the calculated values. The measured error was placed in the 
position of its closest calculated value. Starting from the largest 
absolute error value we worked our way through towards the 
smallest error3. In this way we associate the measured errors 
with a position in phase. 

VI. IMPLEMENTATION OF THE 
OPTIMAL PROCEDURE 

We simulated 45 machines for the dipole errors in dipoles 
for the APS injector synchrotron. Figure 1 shows the sample 
random distribution functions used in the simulation. Figures 
2 and 3 show the frequency with which the amplification factor 
I was improved in each machine, over the randomly placed 
dipoles and quadrupoles, respectively. 

1 It may be pointed out that it is not necessary to specify only one of the 
unknowns to start. We can specify more than one measured value at dif- 
ferent positions and solve for the remaining ones in terms of theknown 
quantities. 
2 Even though we formally haveIn--1) linearly independent equations in 
Eq. (2), it may still be that a set of equations is not linearly independent 
byvirtucofLhecoefficientofthematrixMk.iv”nishingforcenainvalucs. 
3 Note that as we go from the largestvalue to the smaller values thenun- 
beroPchoiccsformeasurederrortobeplacedkeepsdecreasing. Inpartic- 
ular, thelastmeasurederrorhasonlyoneplacetogo. Thereforc,thismay 
not be an optimal way to relate measured values to thecalculated values. 
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The o nly comment in favor of this procedure is that it worked extremely 
well for the simulations run with simulated random errors used for the 
APS injector synchrotron dipole and quadrupole errors. 
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The frequency distribution of the amplification factor for 
sorted and random machines is shown in Figure 4. Figure 5 is 
a similar plot, but here both sets in the plot refer to the arnplifi- 
cation factors obtained after sorting. One corresponds to sort- 
ing 68 dipoles at a time and the other corresponds to sorting 34 
magnets at a time. 
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Figure 6 shows the dependence of the result of sorting on 
the number of magnets sorted at a time. One can easily see that 
the larger the number of magnets sorted at a time the lower the 
amplification factor obtained. Figure 6 also shows the mean 
and the minimum \G. 0 ne can easily see that not only is 

the mcm ~Ldom - much larger than any of the sorted L, but 

the minimum JIrnndom out of 45 random machines is much larger 

than the sorted q%IIran as long as the number of magnets sorted 
is at least 18. Figure 7 shows the same result, but here the plot 

is for the gain factor, defined as ,/IrroJI,rmd, as a function of 
the number of dipoles sorted. 
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