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.4 bstract 

An analytic method to analyze a quasi-periodic disk 
loaded waveguide is presented. We rely on Cauchy residue 
theorem to formulate the transmission and reflection from 
a system composed of radial arms and grooves provided 
that the inner radius is always the same. The quasi- 
analytical approach is not limitted to slow variations of 
the geometry. 

I. INTRODUCTION 

The constraint imposed by the NLC requirements on the 
output spectrum of an RF source limits the input section 
of any system to a very good frequency selective device. 
From this perspective the klystron cavity or a combination 
of a cavity with a magnetic field as in the case of the 
Choppertron(‘) or an FELc2), are the natural candidates 
for the inpul section of any RF system. The main section 
can be a set of isolated cavities as in a klystron, a traveling 
wave (TW) section or a combination of the two but the 
breakdown problem will force us to use a TW structure as 
an output section with one or more extraction ports(3-4). 
A high power traveling wave structure is conceived as a 
sect,ion of a periodic disk loaded structure and its electro- 
magnetic characteristics are determined as if the system 
was infinitely long. Practically these are a set of cavities 
which are coupled through the disk aperture. At the other 
est,reme, the klystron is a set of a few isolated cavities. In 
the former case the beam interacts with a wave continu- 
ously, whereas in the klystron the beam interacts with the 
field in the close vicinity of the cavity. The interaction in 
a uniform periodic structure (TWA) or in a few uncoupled 
cavities (klystron) is relatively well understood. But we 
lack analytical or even quasi-analytical tools to accurately 
investigate the interaction in transition region - which is 
exact#ly what is required for construction of an adequate 
out.put section. For this purpose we have developed an 
analytical method to investigate the beam-wave interac- 
tion in a quasi-periodic structure. The method relies on 
an arbit#rary number of pill-box like cavities of any dimen- 
sion and an arbitrary number of radial arms. The only 
constraint is that the radius of the coupling pipe has to 
be always the same. 

II. BOUNDARY CONDITION PROBLEM 

The syst,em described above is illustrated in Fig.1. For 
the purpose of this presentation we shall describe only 
the sysmm without the beam and we shall indicate where 
t,he differences occur when a beam is present. Unlike in 
a periodic structure where the field in the inner cylin- 
der (0 < r < &a,) can be represented by Floquet series 

we have to consider the entire spatial spectrum of waves 
therefore the magnetic vector potential reads 

s 03 
AZ(r, z;w) = dtA(k)I~(rr)e-jk” (1) 

--M 

where F2 = Ic* - w2/c2, lo(z) is the modified Bessel 
function of the first kind and the system is assumed to be 
in steady state (ejwt ). In the arms or grooves the electro- 
magnetic field should be represented by a superposition 
of modes which satisfy the boundary conditions on the 
metallic walls. In principle an infinite number of such 
modes is required. Our experience indicates that as long 
as the vacuum wavelength is about 5 times larger than 
the groove/arm wiilth the first mode (TEM) is sufficient 
for most practical l~ll*.r*~~~+s. 
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Fig. 1 The schematics of tilt, ~l~~;~~i-I~(~~ic~tlic system. 

This assumption is by no means criL;cai fur the present 
analysis and the arguments are very similar when a larger 
number of modes is required however we use it since it 
makes the presentation much simpler. Within the frame- 
work of this approximation we can write for the magnetic 
vector potential in the input arm 

Az(r, z;w) = A;,H;‘)(;r) + D&)(;r) (2) 

where Hi’)(z) and Hp)( ) z are the zero order Hankel func- 
tion of the first and second kind respectively; Ai, repre- 
sents the amplitude of the incoming wave and Di is the 
amplitude of the reflected wave which is yet to be deter- 
mined. In the n Ih 1 < R < N) groove we have ( 

Atl”(r,z;w) = Wo,n(;r, , (3) 

D, is the amplitude of the magnetic vector potential, 
To,~(~T) = Jo(~~)~lo(~R,,t,,>-Yo(~~)Jo(~R,,t,,) and 
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R eZ:l,n is the external radius of the nth groove; later we 
shall also use the function T~,~(rr) = Jr(tr)Yo(rR,,t,,)- 
~;(p-vO(yLrt,n ). Finally in the output arm 

A*(T,.z;u) = D.yH~2yT) . 

In order to determine the various amplitudes we next im- 
pose the boundary conditions in a way which is similar to 
what is being done in the case of a periodic structure. The 
main difference is that we no longer can look at what hap- 
pens in a single cell to characterize the entire system but 
we have to consider each individual region. The bound- 
ary condition problem is formulated next in terms of the 
amplitudes in the grooves and arms in a matrix form: 

where 

Tn,m = $Q,n&,m - ~o,naXn,m , 

s n = -H(l)(a)S,,l + Hf)((Y)Xn 1 1 (‘3) 

I, = -+ J zn+d,/:! 
dzejkz , (7) 

n tn-dnl2 

db,, = 
{ 

HL2)(a) n = 1 or 12 = N 
Tvp(cr) 1 < 71 < N 

(8) 

and 

d,cu O3 
x - n’m = 2a J 

dk*L;(k)L,(k) . 
--03 AIo(A> 

(9) 

With v = 0,l; Z, is the location of the center of the nth 
groove or arm and d, is the corresponding width. Finally 
LY = yRi,t and A = I’Ri,t. 

III. CAUCHY RESIDUE THEOREM 

The next step is to evaluate the integral which defines the 
matrix x in terms of analytic functions. This is done by 
using the Cauchy residue theorem. First we substitute the 
explicit expressions for L,(k) from Eq.(7). Second, we ex- 
amine the integrand we observe that there are an infinite 
set of poles which correspond to 10(A) = 0. Bearing in 
mind the relation between the modified Bessel function 
ant1 the regular one(Ja(z)) we realize that the condition 

above is satisfied for k2 = (:)2 - &; here pJ are all 
the zeros of the zero order Bessel funct& of the first kind 
i.e. Jo@,) s 0. According to the Cauchy’s theorem the 
contribution to the integral will come from the poles of 
the integrand hence the integral in Eq.(9) reads 

J 

C-3 dkIl(A)ejk(sl-r2) _ 2 OJ 

-m AIo(A> 
(10) 

where I: = (ps/Ri,t)2 - (w/c)~. The last integral is the 
Green function of a uniform waveguide and is easily eval- 
uated as G(~rlcz) = &e- r~121-521. This result permits 
us to express the matrix >I in terms of analytic functions: 
for n = m 

Xn,n = $- 2 $ [l - e-@as-sinhc(O,,,)] (11) 
rnt s=l s 

and 

(12) 
otherwise. In this expression sinhc(r) = sinh(~)/z and 
OS,, = I’,d,/2. The electromagnetic problem has been 
now simplified to inversion of a matrix whose components 
are analytic functions. The transmission pattern of the 
structure fits well the predictions of the dispersion relation 
of an infinite structure. 

In the presence of the beam, using the fluid model, the de- 
nominator in Eq.(9) is a more complex function than the 
lo(A), which in addition to the electromagnetic modes it 
includes the space charge modes. Once the poles are iden- 
tified the only aspect which remains to be consider is the 
fact that the space charge waves, unlike the electromag- 
netic waves, always propagate along the beam. 

IV. DISCUSSION 

Next we shall illustrate the potential of this method. And 
the first goal is to determine what should be the location 
of the arms for adequately feed power into a 9 cell narrow 
band structure (Rest = 14.2mm, Ritlt = 6.2mm, L = 
12mm and d = 6mm). Fig. 2 illustrates the geometry of 
the narrow band structure with 9 cavities and two arms. 
In the first case the arms are 6mm from the first cells 
and we observe that the average transmission coefficient, 
is -2OdB. When the drift region was shortened to lmm 

the transmission coefficient increases dramatically to an 
average value of -3dB (this result was qualitatively ob- 
served in experiment). 
Let us now assume for a moment that we have matched 
the cold system fo a given frequency i.e the gain in dB, 
lOlog(lDN 12drJ/lili,12dl) is zero. We know that in the 
narrow band structure very high gradients develop in the 
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interaction process - in particular in the last couple of 
cells. 
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Fig. 2: The t.rnnsmission coefllcient for the two structures 
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Fig. 3: Transmission coefficient of three structures. 

In order to avoid rf breakdown we want to increase the 
volume where the electromagnetic energy is stored and 
by that we lower the energy density and consequently the 
field. We started with a “linear” tapering of the external 
radius (of the last three cells increases linearly). We have 
varied the width of these cells and their separation in a 
wide range of parameters to bring the transmission coef- 
ficient to OdB at given frequency and the best we could 
achieve was -3dB which is not acceptable; see Fig.3. At 
this stage we returned to the initial geometry only that 
we have doubled the external radius of the last two cells. 
These cavities have two (rather than one) resonant fre- 
quencies, one of which, is close to that of a cavity in the 
uniform st,ructure. After some fine tuning we obtained 
the transmission which is optimized to the required fre- 

quency. Fig. 4 illustrates the transmission characteris- 
tic of system driven by lMV, 1kA beam whose radius is 
3mm. The two sections are separated by a 3cm long drift 
region and thus electromagneticaly they are completely 
isolated. In the left we present the geometry and in the 
right the transmission coefficient. The location of the drift 
tube is critical as illustrated. The periodic structure was 
designed with a phase advance of 2x/3 and we observed 
that when varying the location of the drift region, each 
t,hree cells the picture repeats. ~~ 
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Fig. 4: Transmission coefficient of an active system. The 
drift region is 3cm long. 

In conclusion, we presented a method to calculate the 
electromagnetic characteristics of a quasi-periodic struc- 
ture which consists of radial arms and a set of coupled disk 
loaded cells. The main constraint in this method is that 
the internal radius has to be kept constant. In the sim- 
plified version presented here we used only a single mode 
to represent the field in the grooves and arms this can be 
extended to a larger number of modes. However this is 
necessary only for these grooves or arms whose width is 
more than l/5 the vacuum wavelength; accordingly the 
order of the matrix 7 increases. 
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