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Abstract 
An electrostatic lens is described in which a pulsed 

magnetic field is used to create a radial charge separation in 
a cylindrical plasma. The radial field can be made strongly 
focusing for a positively or negatively charged beam passing 
along the axis. On a longer time scale, the ions initially in 
the plasma are accelerated to the axis with energies of up to 
0.5 MeV. The device may be useful as a generator of 
neutrons as well as a lens for charged particle beams. Pulsed 
radial electric fields exceeding 100 MV/m should be possible 
from modest magnetic compression fields. 

I. INTRODUCTION 

Several collective accelerators have been described 
and tested in which ions are trapped in the space-charge 
electric field of a non-neutral rotating electron ring which is 
subsequently accelerated by a magnetic gradient l. The 
advantage of such schemes is that the space-charge electric 
field of the electrons can be stronger than accelerating fields 
created by other means. In this work, we describe a lens 
based upon a cylinder of charge-neutral plasma in which 
there is a radial, space-charge electric field due to a pulsed 
magnetic field acting unequally on the electrons and ions 
(Fig. 1). We show that potentials of the order of 0.5 MV can 
be created. The device is similar to a collective lens which 
has been experimentally den~onstrated2~3~4,5. 
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Fig. 1. Schematic diagram of the plasma accelerator. A 
rapidly rising magnetic field pushes the electrons and ions 
toward the axis. The difference in masses causes a radial 
clcctric field which retards the inward motion of the 
electrons and which accelerates the ions. 

II. EQUATIONS OF MOTION 

We assume a cylindrical plasma having a length 
much longer than its radius so that axial motion can be 
neglected. We also assume that the plasma is collisionless 
and that the canonical angular momenta of the particles are 
conserved. The angular momentum P, for the electrons is 

PO = qrh +ym,r% = -er,Ao,o . 111 

where q = -e is the electron charge, r is the radius, 4 is the 
time dependent vector potential, bp is the initial vector 
potential which determines the conserved value of P,, y is 
the relativistic factor. m, is the rest mass of the electron, and 
8 is the azimuthal coordinate. The subscript zero denotes 
the value at the initial time. For a uniform field the vector 
potential can be written 

A, = Q/2 w = rB, /2 , PI 

where CD is the flux enclosed at radius r and B, is the time 
dependent axial field. The angular velocity is then 
determined by the change in the vector potential: 

(j= -4 -34 -$4,0, = fi,., -*QL#” 1 
2 Ytn, Yr 

[31 

where 

%,e = Isl4/w% 141 

is the Larmor frequency (half the cyclotron frequency), B,, 
is the initial field which determines the initial canoni& 
angular momentum, and aLeO is the initial Larmor 

’ ’ frequency for which y = 1. 
The radial equation of motion is 

$(ytnj)- ytne& = -e(E, +r6Bz) , t51 

where E, is the space-charge radial electric field. The 
angular velocity is known from (31 thus [5] becomes 
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The radial equation of motion for ions is found in the same 
way with the simplification that the ions can be treated 
nonrelativistically: 

qF+qr[Cli. -[yji]=eE, . [71 

The electric field is found from Poisson’s equation. 
If we assume a sufficiently large plasma density, then a small 
fractional difference in charge density can provide the 
electric field. This quasineutrality assumption allows us to 
set the electron and ion densities equal. The continuity 
equation then requires that the radial velocities be equal. 
The equations of motion can then be smlmled to yield a 
single equation 

m,i: = -ym)I,r 
i ’ 

rc%t c 0 
Cl: e - 1 

1 y4 ’ 
PI 

whcrc we have used that Ymr << mi. This can be further 
simplified to 

! * 

r,4Q2, H 0 i;=-r QjJ- ” , 
Yr4 I 

where we have delined a hybrid Larmor frequency 

e2B’ 
nz,, =A 

4y?lJ?l, 
= fiL,e%.i 

and an initial hybrid frequency flL,H,o. The electric field is 

eE, = -yj,lcr[Q~,e -*j,,,6 . 

The last term in the above equation can be ignored because r 
and y vary on the hybrid time scale. The electric field rises 
linearly from the center to the edge of the plasma CO~UI~IL 

If there is no initial field, [9] is an harmonic 
oscillator equation at the hybrid frequency. If the magnetic 
field is instantaneously increased from zero to a value B,, 
both the electrons and ions accelerate to the asis in a time 
7t/2QL 11. The electric field induced by the increasing 

magnetic field accelerates the electrons azimuthally and they 
begin to spiral toward the origin. A radial, space-charge 
electric field develops which prevents the electrons from 
moving radially more quickly than the more massive ions. If 
an initial magnetic field is suddenly decreased, the electrons 
begin to spiral outward which creates a radial space-charge 
field of the opposite sign. 

III. OPERATING LIMITS 

A. Upper bound on charge density 
The analysis assumes that the azimuthal current 

induced in the plasma does not reduce the magnetic field at 
the axis. This assumption places an upper bound on the 
plasma density. For relativistic electrons, the current density 
can be estimated by assuming that the electron tangential 
velocity is the speed of light. From the current density and 
Ampere’s law we find that 

hn,jB, = ponecr/Bz , [I21 

where AB,/B, is the fractional change in the field. 
Requiring this to be small we find 

[I31 

where tipe , is the nonrelativistic electron plasma frequency 
and mce = 
freque&y. 

eBJm, is the nonrelativistic electron cyclotron 

In the nonrelativistic limit, the electron angular 
velocity is given by the Larmor frequency and the fractional 
change in the field is 

AB 2 = +poneClL,,r2. 
4 

[I41 

Requiring this to be small we get 

(ape 2, lc’)(+r’) <<l I151 

which places an upper bound on the product of the density 
and the square of the radius. This condition is written to 
show that it corresponds to having the magnetic skin depth 
c$,,~ longer than the radius of the plasma. For example, a 
plasma density of 10 l2 cmS3 results in c/~~,~ = 3 cm. 

B. Lower bound on charge density and upper bound on the 
magnetic field 

The assumption of quasineutrality places a lower 
bound on the plasma density. If we require that 

(n, -n,)ln, << 1 , [161 
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then Poisson’s equation requires 

[I71 

This lower bound on charge density has the effect of being 
an upper bound on the applied magnetic field. 

C. Combined limits 
The greatest electric field is created by operating at 

the upper bound on density and the upper bound on magnetic 
field. We estimate the maximmn field by setting 2wp,e2 = 

2 to approximate the upper bound set by [ 171, by setting 
zz? = 2c2/r2 to approximate the upper bound set by [ 1.51, 
a&l obtain from [ 1 l] 

1 
eE, = -ynpmfc 

4 * 
= +ymem~.c = ym,c2 I r . 1181 

This places an upper bound on the electrostatic potential at 
the surface of e$ = ym,c2. Thus the peak potential must be 
kept below 0.5 MV to avoid violating the assumptions of the 
derivations. 

density. The upper bound on magnetic field is satisfied by a 
field of 500 G. The hybrid Larmor period for a plasma with 
barium ions is 161 nsec/rad. The magnetic field should rise 
to a constant value in a time shorter than this period. The 
period for a hydrogen plasma is much less and a magnetic 
field with sufficient risetime would be difficult to create. If 
the plasma radius is increased to 30 cm, the maximum 
density falls to lo9 cme3, the maximum field falls to 50 G, 
and the hybrid period for a deuterium plasma is 139 
nsec/rad. 

As a radial accelerator, the lens may have promise 
as a source of fusion neutrons due to the line focus of the 
accelerated ions. The energy which can be imparted to 
deuterium or tritium ions is of the order of 0.5 MeV which is 
well above the threshold for fusion reactions. For this 
application it may be advantageous to locate a solid 
cylindrical target on axis. If an initial field is used to 
confine the plasma, this target should have a radius 
corresponding to the radius where the ion energy is 
maximized. The fision yield without a target depends upon 
the minimum radius to which the plasma is compressed. In 
the case of no initial field, the minimum radius is 
determined by the initial angular momentum from the 
thermal motion of the ions and electrons. 

V. REFERENCES 
IV. APPLICATIONS 

In a lens of radius 2 cm, for example, it should be 
possible to create a potential of 0.2 MV which corresponds to 
a focusing field of 10 MV/m. The focusing electric field has 
the same radial force on relativistic particles as a magnetic 
field of strength E/c g 0.03 T. This is less than the field 
available from magnetic quadrupoles thus there is no 
advantage in the lens for relativistic particles. For particles 
below about 0.03 c, the radial force is greater than can be 
obtained in quadrupoles and there may be an advantage in 
the electrostatic lens. 

A prototype device with a plasma of radius 3 cm 
and a density of 10’ 1 cm3 will satisfy the upper bound 011 
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