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Abstract 

A novel high-gradient magnetic field-decay 
accelerator is presented in which the drive-beam leaves behind 
a high-gradient accelerating field produced by the magnetic 
field decay. The electromagnetic fields indicate a decaying 
function of the time. As an example, we obtain the 
acceleration field for the case of a short and intense drive 
bunch, which is represented by a parabolic function of time. 
With appropriate physical parameters, the acceleration 
gradient of the magnetic field-decay accelerator can be easily 
more than 150 megavolt/meter. 

I. INTRODUCTION 

In recent years, there has been a strong progress in 
the high-current electron-beam technology. Electron beams 
with an energy of 10 MeV and a current of 10 kA are easily 
available in the present technology. In addition, a tremendous 
improvement has been made in the effective control of these 
electron beams, including the focus, modulation, and a timely 
termination of the beam current. Thus, the electron beam 
itself is used as a drive current in accelerators. In this 
presentation, we study the acceleration mechanism based on 
the magnetic field decay.’ The magnetic field energy is 
stored in a high-permeability material by a continuous beam 
current. If the current drops abruptly, the magnetic field 
stored in the material decays, thereby generating an 
acceleration electric field. Physics of the accelerating field 
arising from the finite conductivity waveguide is very similar 
to that of the longitudinal resistive wall instability2T3 which 
has been investigated for application to circular accelerators. 
In this presentation, a theory of the magnetic field diffusion is 
developed, in order to estimate the acceleration gradient 
whenever the sustaining beam current drops. As an example, 
we obtain the acceleration field for the case of a short and 
intense drive bunch, which is represented by a parabolic 
function of time. The acceleration field is given by E, = 
150 MV/m, for the waveguide hole radius of RI = 0.5 cm, 
the saturation magnetic field B, = 15 kG, and At = 10-l’ 
second. Assuming that the parameter ua = 80 siemenslm, 
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the required drive current for the saturation field is given by 

en = 660 kA, which is equivalent to In, = 660 A for u = 
1000. The total charge of this drive beam pulse is Q = 85 
nanocoulomb for In, = 660 A. 

II. EVALUATION OF ACCELERATING FIELD 

The theoretical model is based on the induced electric 
field due to decay of the field energy stored in an energy 
storage device. We assume that an electron beam with 
current I(t) propagates through a hole with radius of Rl in the 
field-energy storage with radius of R2. If the current drops 
abruptly, the magnetic field stored in the material decays, 
thereby generating an acceleration electric field 

JW$J) - - 9 h-$ [J,(@j - J,,(~R,)]~ 
(1) 
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where the time function qk(x) is defined by 

q,(r-r/) - exp[- -$$. (r-r31, (2) 

and o and u are the conductivity and magnetic permeability 
of the energy storage material. Substituting Eq. (2) into Eq. 
(l), we show that the acceleration electric field E, is 
expressed as 

E,(r) - - $---/-l dr’$) ~--dkkpJ,w2l 

- J&q*exPI- Sk?. 

(3) 

For convenience in the subsequent analysis, we define 
the normalized times C and C’ by 

( - c2r c’ - c2rf 
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Making use of Eq. (4), Eq. (3) is rewritten as 

(5) 

- Jo(x)]%xp[-~x~. 

The integration over the variable x is carried out by making 
use of the integral4 

I o”~~wN- p2x2)JpbWp(P4 

_ LBXP(-02,82)~ (Dp) 
2P2 4P2 p 2p2 

(6) 

of the Bessel functions. The accelerating field in Eq. (5) is 
expressed as 

E,(t) - -1-J’ 
2xaRf -- 

0 

- 2 exp(-‘+$&$I,(~~)I, 

where SC = C - C’. 

The contribution of the second and third terms in the 
square bracket in the right-hand side of Eq. (7) is less than 20 
percent if the parameter R2/R1 is larger than five in practical 
applications. Thus, we neglect these terms and Eq. (7) is 
simplified to 

E,(f) - --J-q &(-$)--$w(--&&(~)I- GO 
2xtrRf -- 

Recognizing the approximation 

(9) 

for the variable x satisfying x < 10, we can further simplify 
the acceleration field in Eq. (8) by 

E,(f) - - (2n);aRf -f.& $1 i (lo) 

which is one of the main result in this section and can be used 
to calculate the accelerating field for a broad range of system 
parameters. Note that the drive current I(t) in Eq. (10) is not 
specified yet. I remind the reader that Eq. (10) is valid for C 
- C’ C 10. This requires that the observation time C must be 
close to the time C’, at which the maximum current-change 
occurs. As will be seen later, the peak acceleration field 
occurs right after the maximum current decrease. Therefore, 
the restriction c - C’ < 10 is well justified. Similarly, the 
azimuthal magnetic field at r = R1 is obtained from Bo(Rl,t) 
= -(a/&)A,(r,t) and given by 

wm - 2&R, c -1 &z((l, $ (11) 

which will be used to estimate the magnetic field at r = Rl 
only for a fast-changing drive current. 

As an example, we consider the case when the drive 
electron beam has a very short pulse with the pulse profile 
defined by 

z(t) - Z,(l - 3) U(At* - t2), (12) 

where At is a constant related to the beam pulse and U(x) is 
the Heaviside step function. Substituting Eq. (12) into Eq. 
(11) and carrying out the integration over the time t’ , we 
obtain the acceleration field 

E,(t) - (13) 

where the function q(u) is defined by 

4(u) 

-i 

JuT-T(2u - l), -1 < u < 1, 
(14) 

&7(2u-l)-Ju-i(2u+l), u > 1. 

Shown in Fig. 1 is plot of the function q(u) versus the 
normalized time u obtained from Eq. (14). Value of the 
function q at early stage of the drive-beam pulse is negative, 
indicating that the drive beam transfers its kinetic energy into 
the field energy in the energy storage device. This large 
negative value of the function q inside the drive pulse 
decelerates the beam itself quickly. In this regard, the pulse 
profile in Eq. (12) is not appropriate for efficient acceleration 
of the witness beam. The negative value of q(u) in the pulse 
must be minimized by a gradual increase of the drive-beam 
current. However, this simple profile is good for the 
feasibility study, which is the purpose of this article. As 
shown in Fig. 1, the function q increases from its minimum 
as the normalized time u increases from u = - 0.5 to 1. By 
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self-evolution, this portion of the drive pulse will stiffen the 
termination slope of the current, eventually increasing the 
peak value of the function q. The peak value of the function 
q(u) occurs at u = 1, where the drive pulse ends. Electrons 
trailing the drive beam get their maximum energy gain. In 
reality, the peak value of the function q measured at the axis 
occurs little later than u = 1 because there is a traveling time 
of the acceleration field from r = R, to r = 0. Eq. (14) (or 
Fig. 1) exhibits that there is no negative value of q(u) outside 
the drive beam pulse (u > 1). In this regard, this system is 
not useful for acceleration of positrons. The positive peak 
value is about q(u=l) = 1.5. Therefore, the maximum 
acceleration field is given by 

Z 
Em s-l!!--, 

XCR, d 
P (15) 
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from Eq. (13). 
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Fig. 1. Plot of the function q(u) versus the normalized time u 
obtained from Eq. (14) for the drive current profile in Eq. 
(12). 

It is important to determine the magnetic field at r = 
R, because the field there must be less than the saturation 
value B,. Substituting Eq. (12) into Eq. (11) and carrying out 
a straightforward calculation, we obtain 

B&4 4 (16) 

where the function g(u) is defined by 

g(u) - JiK-T(3 + u - @). (17) 

The magnetic field increases from zero and reaches its peak 
value of 3.67 at u = 0.5 and decreases as the time progresses 
from the head of the beam to infinity. Making use of this 
peak value, we can approximately relate the drive current to 
the saturation field by 

(18) 

Eliminating the beam current in favor of the saturation field 
B,, the maximum acceleration field is expressed as 

which is remarkably proportional to the hole radius RI. For 
specified saturation field and pulse length, the acceleration 
field increases linearly as the hole radius increases. 

As an example, we consider the case of RI = 0.5 
cm, the saturation magnetic field B, = 15 kG, and At = 
10-l’ second. The acceleration field for these parameters is 
given by E, = 150 MVlm obtained from Eq.( 19). Assuming 
that the parameter pa = 80 siemens/m, the required drive 
current for the saturation field is given by &, = 660 kA, 
which is equivalent to I, = 660 A for p = 1000. The total 
charge of this drive beam pulse is Q = 85 nanocoulomb for 
I, = 660 A. Therefore, the acceleration field per unit charge 
for these parameters is given by Em/Q = 1.8 MV/m/nC, 
which is similar to the result obtained from the wakefield 
accelerator study for similar physical parameters. 

A high-current relativistic electron beam with 
relatively low energy propagates through a hole bored along 
the field storage device. Obviously, there should be a 
physical mechanism to maintain an equilibrium condition of 
the beam, The axial magnetic field is an excellent means to 
hold the beam electrons together. However, in this case, the 
magnetic field may not penetrate well through the high- 
permeability material. We thus 
focused-regime (IFR) propagation s 

repose to use the ion- 
of the electron beam. 

When a relativistic electron beam propagates through a 
preionized channel, channel electrons are expelled by the 
electrostatic force generated by the head of the beam, leaving 
an ion channel behind. This ion channel partially neutralizes 
the space charge field of the electron beam, thereby permitting 
a focused beam. The IFR propagation of a relativistic 
electron beam has been well demonstrated. 

III. REFERENCES 

[l] H. S. Uhm, Pmt. of 1991 IEEE Particle Accelerator 
conference May 6-!3,1991, San Francisco, Cal. Vol. IV, 
2566 (199 1). 

[2] V. K. Neil and A. M. Sessler, Rev. Sci. Instrum. 36, 429 
(1965). 

[3] H. S. Uhm, Phys. Fluids 25, 690 (1982). 
[4] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, 

Series, and Products, (Academic Press, New York 1980) 
Chap. 6. 

[5] R. Smith, R. F. Schneider, M. J. Rhee, H. S. Uhm and 
W. Namkung, J. Appl. Phys. 60, 4119 (1986). 

PAC 1993


