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Abstract 
A useful method for obtaining stable transverse mo- 

tion in a (racetrack) microtron is the application of bend- 
ing magnets with an azimuthally varying field (AVF) pro- 
file. A Hamiltonian theory has been set up to describe 
the reference orbit as well as the optical properties in both 
transverse directions for an AVF magnet with an arbitrary 
field profile. We recapitulate the main analytical results 
of the Hamiltonian theory and compare these to the re- 
sults of numerical calculations for a relevant example AVF 
profile. 

I. INTRODUCTION 

For cyclotrons, it is well known that simultaneous 
horizontal and vertical orbit &ability as well as isochro- 
nism can be achieved by subjecting the beam to an az- 
imuthally varying magnetic field. We apply similar ideas 
to a (racetrack) microtron, i.e. we superimpose an az- 
irnuthally varying field (AVF) profile on the main average 
magnetic field of the bending magnets. When such mag- 
nets are designed properly, quadrupoles in the drift space 
and solenoids on the cavity axis are no longer needed to 
focus the beam. 

As the modulation of the magnetic field is assumed 
to be small, a first order solution for the particle motion 
has been derived. In this paper, we will compare these 
analytical results with numerical calculations in order to 
verify the first order equations and to examine higher order 
effects. 

II. ANALYTICAL RESULTS 

In this section, we recapitu1at.e the main analytical 
results, obtained in reference [I]. A schematic overview of 
the geometry is given in Fig. 1. We consider a bending 
magnet in a polar coordinate system (T, d, z). The median 
plane is the z = 0 plane. A test particle is injected into 
the magnet at the origin of the righthanded coordinate 
system (r, 29,~). Th e median plane field B, (pointing in 
the positive t direction) is assumed to depend only on d 
and is split into a constant main field Bo and a flutter 
profile f(29) 

We assume f(O) = (@/&9)0 = 0. The pole edge where 
the beam exits the magnet is located at L9 = 3~. Via a 
suitable choice of the vector potential, the magnetic field 
is incorporated in a relativistic Hamiltonian decribing the 

B,=B,(l + f (8)) 

equilibrium orbit r (8) 

(1st order solution) 

unpaturbed orbit ro(6) 

(Otb order solution) 

origin of coordinate /1 

syslm(r=0=2=0) 

0 z.B. 

Figure 1: Schematic overview of the considered geometry. 

median plane particle motion with d as independent vari- 
able. From the solution for the equilibrium orbit up to 
first order we can derive expressions for the exit angle + 
(defined as the angle relative to the pole boundary normal 
vector) and orbit lengt,h s through the magnet. We obtain 

J r/2 4 = -2 f(G) cos(24d79, 

s = R{:iC-2/l.J2fl))diii, 

where R is the reference radius, defined as R = &/(e&,), 
with e the electron charge and PO the total kinetic mo- 
mentum. The angle $ should normally be chosen zero for 
the sake of closed orbits. 

The linear, transverse oscillations with respect to the 
equilibrium orbit, either horizontally (2) or vertically (z), 
are derived from Hamiltonians and can be expressed as 
phase space transfer matrices iI{, and M, 

(;),=dl,@)( ;I), YE{~,~I, y’=dylds. 

In the present paper, we only consider the trace of the 
transfer matrices as a function of azimuth. These read 

Tr*(zP) = 2 + [a - 4 (dF/d19)]3, 

Tr”(19) = 2 ~04219) - 2[G+ g (dF/dzl)] sin(221), 

0-7803.1203-1/93SO3.00 

0 1993 IEEE 
2065 

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993



,- 0.6 
1 
g 0.4 

0.2 

0.0 

-0.2 ~...“.‘.““‘.“‘..““.‘....~ 
0 15 30 45 60 75 90 

0 (ded 

Figure 2: Shape of the applied AVF modulation 

with 

F(L9) = l J 
4 

J 

d 
sin2(t9)o 

f(t)sin(2t)dt, G(3) = s(Wv 
0 

1 df 1 d2F 
g(d) = 2f - 2F - -- - -- 

2 tan(d) dt9 8 dP ’ 4 
u(l9) = - J[ 2 df ----- 

0 tan(d) dil 
’ d2F dt. 
2 dtY2 1 

By evaluating the above expressions at 19 = x/2, we can 
find the matrix traces Trz,, for half the revolution 

Tr:/2 = 2 + 4 ira, Tr;,, = -2, 

with 

J 
n/2 Z s a(r/2) = - 2f(d) drl, 

0 sinz(19) 

Using the mirror symmetry of the equilibrium orbit (as- 
suming G = 0), we can also derive the traces Tr: for a full 
revolution through a ‘classical’ microtron (no drift space). 
LYe obtain in first order 

Tr: = 2 + 27rTi, ‘II”, = 2. 

III. NUMERICAL CALCULATIONS 

In order to check the above analytical first order re- 
sults, exact numerical calculations have been done for var- 
ious profiles. In this paper, we consider one specific profile 
and examine the effect of its amplitude on exit angle, orbit 
length and focusing propertics in both transverse planes. 
The profile we consider is 

f(G) = fo sin4(2il), 

being a smooth hill (jo > 0) or valley (fo < 0), centrrctl 
around t9 = r/4, see Fig. 2. For this specific profile, WC 
obtain with our first order tlleory 

I) = 0, s = rR(l - 3fo/8), a = -r/o, 

Tr:,2 = 2 - 1 7r2f0, ‘I‘rf = ‘L - 27r?fo. 
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Figure 3: Exit angle 11, as a function of fo. 
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Figure 4: Orhil length s as a furlctim of fo. 

For the numerical calrulat,ions we consider the interval 
-0.5 < fo < 0.5 as to get a good view on effects higher 
order in fo. All calculations were done for PO = 20 hleV/c 
electrons and Eo = 0.19 T. 

Fig. 3 shows the exit angle 11, as a function of fo as 
obtained from numrrical calculations. The curve has been 
fitted with a fifth order polynomial in fo. It turns out that 
there is no first order term, fully in accordance with our 
first-order result 11 = 0. The dotted curve reprcscnts only 
the second order term of the polynomial. From this we 
infer that a second order theory could give a much more 
accurate expression for the exit angle, hence also a more 
accurate condition for keeping the orbits closed. 

In Fig. 4, the total orbit lengbh is plotted against 10. 
The dashed, sloping line represents our first order result. 
It convincibly touches t.he numerical curve in fo = 0. The 
difference between both curves increases with incrrasing 

Ifol, but once again, we see that this diCTereuce could be 
highly reduced by a second order description, as required 
for the sake of the isorhronism condition. 

The linear transvcrsc motion in both transverse direc- 
tions was numerically calculated as a function of azimuth. 
From the resulting matrices, the trace as a function of az- 
imuth was extracted, its zero order part removed and the 
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Figure 5: Normalized horizontal and vertical trace as a 
function of azimuth 19 through a single magnet. 
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Figure 6: Vertical traces Trs,, Tc12 as a function of fo. 

remaining part divided by the amplitude fo. The resulting 
curve (the ‘normalized trace’) is in first order independent 
of fo, hence any fo dependency represents higher order 
terms. The drawn lines in Fig. 5 are the normalized hori- 
zontal and vertical traces as a function of azimuth as de- 
rived from the first order theory. The dashed lines are the 
result of the numerical calculations for the cases fo = 0.1, 
0.3, 0.5 and 0.7. The higher order deviation gets larger 
with increasing fo, but the overall shape of t.he curves is 
retained and the values at 29 = 7r/2 are still very close to 
the first order result. 

In Fig. 6, the matrix trace for vertical motion as a 
function of amplitude is shown. The two drawn curves 
represent the numerical results for half an orbit through a 
microtron (labeled 7r/2) as well as for a full orbit (r). The 
dashed lines represent our first order analytical results. 
The agreement for half the orbit is excellent over the entire 
amplitude range. For the full orbit, higher order effects 
become significant for amplitudes larger than 0.3. It is 
interesting to note that the numerically obtained curve 
for Trc bends back to the stable region for fo < -0.3; this 
means that for fo x -0.55, vertical motion can be stable 
again, but it is governed by higher order effect,s in fo and 
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Figure 7: Horizontal traces TrZ as a function of fo. 
therefore very sensitive to small changes in fo. 

In Fig. 7, the matrix traces for horizontal motion as 
a function of amplitude are drawn. For half the orbit, we 
see that there is a weak second order contribution that 
moves the trace value outside the stable region for either 
sign of fo. For the full orbit, it was predicted by the first 
order theory that there could be no second order effect of 
fo on the trace [I]. Indeed, we see that the curve of Trc is 
antisymmetric around fo. A least squares fit of the results 
with a fifth order polynomial in fo proved that no second 
order term is present in the curve. 

Combining the results of Fig. 6 and 7, we see that, 
for the present profile, simultaneous horizontal and verti- 
cal beam stability in a ‘classical’ microtron is not possible 
with small values of fo. This same conclusion has been 
derived in general for the case of a racetrack microtron 
(with driftspace) in reference [l]. As a solution, we rotate 
the bending magnets of the racetrack microtron through 
the median plane (but keeping the orbits closed), thus in- 
troducing additional quadrupole effects at the magnet en- 
trance and exit. For a classical microtron (no drift space) 
this solution cannot be used. 

IV. CONCLUSIONS 

We have compared the analytical results of our first or- 
der description of the azimuthally varying field (racetrack) 
microtron with numerical results for one specific AVF pro- 
file. The analytical t.heory shows excellent agreement with 
the numerical calculat,ions up to first order. Second order 
erects could be important for determining the exit angle 
and orbit length, but focusing properties are sufficiently 
accurate in first order for flutter profile amplitudes up to 
30%. 
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