
A Software System for Modeling and
Controlling Accelerator Physics Parameters

at the Advanced Light Source *

L. Schachinger and V. Paxson
Lawrence Berkeley Laboratory

Berkeley, CA 94720

Abstract

We describe a software system used at the Advanced Light

Source for accelerator physics studies and accelerator control.

The system consists of a number of Unix processes that can be

connected together in modular ways. Processes communicate

using messages with a common data format, but processes do

not know where their messages come from or go to, making each

process easily replaceable by others using different algorithms,

measurement techniques, or models. Some of the controls and

correction functions we have implemented using the system are

closed-orbit correction, continuous tune display, and Fourier

analysis of turn-by-turn beam position monitor (BPM) data.

INTRODUCTION

Over the lifetime of an accelerator, and particularly in the
commissioning phase, programs which measure and correct
machine parameters can change significantly. For instance,
at the ALS our current orbit correction algorithm is the lo-
cal bump method, but we plan to implement an algorithm
based on Singular Value Decomposition in the near future.
As diagnostics come on line and are better understood,
preferred methods for measuring a particular parameter
change. Currently we use a model to calculate tunes from
magnet currents, but soon we will read the tunes from
a spectrum analyser, or perform an FFT of turn-by-turn
data from the BPM’s. These circumstances cry out for a
modular, flexible approach, so that new correction algo-
rithms or measurement techniques can be substituted and
compared easily.

TOOLBOX PHILOSOPHY

VVe have long advocated a Yoolbox” approach to build-
ing accelerator simulation and control software[l]. This
approach emphasizes building applications by plugging to-
gether modular, single-function programs. The goal is

*Work supported by Director, Office of Energy Research, Offke of
Basic Energy Sciences, Materials Sciences Division: U.S. Department
of Energy urdrr Contract Number DE-AC03-76SF00098.

to avoid monolithic, buggy, hard-to-maintain applications,
and instead to stress having the flexibility to rapidly piece
together new applications as the need arises.

Crucial to this approach is the modularity of the indi-
vidual programs t,hat comprise the toolbox. Each of these
programs must be wholly self-contained; if we are to be
able to connect the programs together in unforeseen ways,
the programs must not assume anything about what other
programs they might communicate with.

We can achieve this degree of modularity by making the
programs ecent-oriented. By event-oriented, we mean that
we write programs in terms of events they receive, telling
them what to do; and events they generate, publishing the
results of whatever they did. Each event is a name (e.g.,
“compute tune”) and a value (typed data associated with
the event). Event values can be quite large, as programs
may have to communicate a large amount of data (e.g.,
computed ,& and & values at every BPM and corrector).

Programs do not know anything about where the events
they receive came from, nor where the events they generate
go to. In this way, programs remain completely modular.
By making the events generated by one program become
the events received by another, we can forge a new ap-
plication from the two programs even though neither was
written with any knowledge of the other.

THE GLISH SOFTWARE Bus
An environment for connecting together these sorts of
modular programs is sometimes called a software bus, in
analogy with hardware busses that enable independently-
designed hardware components to communicate. The soft-
ware bus we use, called G&sh[4], was designed with accel-
erator applications in mind.

While programs are written for use with Glish in an
event-oriented style, Glish does not limit the names of the
events used by a program nor the struct,ure of the asso-
ciated data. At first this might seem like granting the
program writers too much freedom, since how can the pro-
grams communicate if they don’t agree on data formats
and naming conventions?

The answer lies in Glish’s chief strength: Glish provides
an interpreted scripting language, similar to that used in

0-7803-1203-l/93$03.00 0 1993 IEEE 1940

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993

shell programming, for piecing together applications from
individual Glish programs. These scripts not only specify
which programs to run, but can dynamically control what
should be done whenever any of the programs generates
a particular event. Here, ‘what should be done” includes
possibly routing the event to another program (perhaps
renaming it), and modifying the event’s associated data.
Thus Glish offers a powerful sort of “glue” that we can
use both to connect disparate programs, and to overcome
their incompatibilities. If, for example, we want to use pro-
grams written with different physical units, or sign conven-
tions, or data structures, a Glish script can readily provide
on-the-fly conversion between the two programs, without
requiring any modification of any source code.

A final benefit of Glish is that it supports transparent
networking. Glish programs can run on different hosts and
never know that their events travel over a network.

ORBIT CORRECTION APPLICATION

One of our principle simulation and control applications
for the ALS is orbi2 correction. The present application
we describe here evolved from that described in [3].

On the face of it, correcting the orbit of an accelerator
is a simple task. Given the machine’s current trajectory,
calculate the corrector settings necessary to flatten the tra-
jectory; apply the new settings; and we’re done. So simple
that we might be tempted to write a single program to
deal with the entire task.

In reality, though, many other factors enter into the ap-
plication, and greatly complicate it. Correctors or moni-
tors may be broken, disabled, or untrustworthy. We might
need to use different hardware to read the first turn tra-
jectory, before beam is stored, than the closed orbit, and a
different correction algorithm in the two cases. We might
want to average the position readings over a variable num-
ber of turns. Beam position monitors (BPMs) have offsets
due to engineering errors, correctors have calibration fac-
tors for converting between radians of angle and amperes
of current. We may have to apply corrections in steps, to
avoid risking beam loss from overzealous correction. We
may be able to use nominal phase and beta information
for the accelerator, or want to calculate more precise val-
ues. Our “goal orbit” may change from a flat trajectory
for stored beam, to a betatron oscillation when injecting.

Finally, we want a single application that can correct the
orbit for both the ALS booster and the storage ring, taking
into account all of the above factors. And we want to use
this same application on-line, correcting the actual orbit,
off-line for simulation using a modeling program instead of
the actual hardware, and with data we previously archived,
to try alternative correction strategies.

Figure 1 shows how we built the orbit correction ap-
plication using Glish. The boxes along the left and right
edges represent different Glish programs, all of which con-
nect to the central software bus. The dotted box at the

bottom represents static information that the Glish inter-
preter reads from data files and disseminates to those pro-
grams needing it.

The “Simulation / Accelerator” box represents one of
two programs: either our modeling program (Teapot), for
simulating orbit correction, or access to the actual accel-
erator hardware, for on-line orbit correction. The Glish
script picks which of these t,wo programs t,o use based on
the script’s run-time arguments.

Arrows indicate the events received and produced by
each program. Note that there is not necessarily a one-
to-one correspondence between an event produced by one
program and an event sent to another program. Sometimes
the Glish script itself deals directly with these events. For
example, while the User Interface might request the cur-
rent trajectory using a “get orbit” event, the Glish script
decides whether to pass that event along to Simulation /
Accelerator as a “get closed orbit” event, or whether to
use the separate program for First Turn BPM Readouts.
In the latter case, the script must send several different
events to the program, one first to trigger the hardware,
and then ones to read the X, Y, and signal sum values.
Each of these elicits a separate event in response.

Picking between these two sources for the current or-
bit illustrates a key point: t,he system can accommodate
two very different ways of getting the beam position data,
and it does so transparently to all of the other programs
involved in the application.

The orbit-correction application achieves all of the goals
outlined above: we use it for both the ALS booster and
the storage ring, both on-line, off-line to examine archived
data, and off-line for simulation. A considerable amount
of the application is done directly in the Glish script: con-
verting between the units and sign conventions used by the
different programs, incorporating BPM offsets and correc-
tor calibration factors, averaging trajectories over multiple
turns, applying fractional corrections. modifying first-turn
readings based on the signal sum values, computing trajec-
tory and correction statistics, and enforcing “fixed status”
(e.g., “always off’) for devices whose status is erroneously
reported by the hardware.

TURNPLOT APPLICATION

Another application we built using Glish is turnplot, a pro-
gram for analyzing beam position data[2]. Turnplot is
structurally simpler than orbit correction, but maintains
the property that it can be run on either the ALS booster
or the storage ring, using either live hardware readings,
tracking data produced by a modeling program, or previ-
ously archived data. Turnplot can analyze either a single,
full turn of data (taken at each BPM), or an orbit scanned
over every nth turn at a specified BPM.

Turnplot can display tracking data as a turn-by-turn
point plot, as a phase space plot, or as X/Y dat,a. In addi-
tion, we can FFT tracking data to identify probable X, Y?

1941
PAC 1993

User
interface

Correction
Algorithm

Goal
Orbit

,

correct orbit
save/load stat0
set monitor
set corrector
first turn
corrector frac
load BPM offstat
get orbit
get corrector8
get goal orbit
get twills

d--
set correctors
set orbit
archive aoae
display Twiss

init
correct orbit

correction

+get goal orbit

goal orbit

init
get cotrectorn
eet correctorn
get closed orbit

..-------)
+ __-__-.

hit aone
correctors
closea orbit

trigger
x. Y. sum

+ .---- - .~~
triggered
xvaluee
yvalues
sumvalue

__ get ALL----,

4 --~~~~

TWiSS

save, load -+
4

save status
load values

Simulation

Accelerator

First Turn
BPM Readouts

Twiss

I
I
I
I Element names, positions, nominal phase/beta
I I Nominaltunes,physical aperture
I BPM offsets, corrector calibrations, fixed device status
I I ..~_~

Figure 1: Structure of Orbit Correction Application

and synchrotron tunes, display harmonics associated with suring tunes, and by reading turn-by-turn data from all
those tunes, select alternate FFT peaks if a peak found au- the BP&I’s while exciting a betatron oscillation), one to
tomatically appears unlikely, and display resonance plots measure and correct dispersion, and one to measure and
for the identified tunes. correct linear coupling.

TUNEPLOT APPLICATION

A third application is tuneplot, for analyzing and control-
ling the machine tune. Tuneplot displays the current tune
values on a resonance diagram. Like turnplot, tuneplot has
no knowledge of where the tune values come from, so they
can be changed transparently, including using a spectrum
analyzer, the BPM hardware, and values computed from
the present magnet currents. Because whenever tuneplot
is sent a “tune read back” event it updates its display,
we can use tuneplot to continuously display the tune, com-
puted in %eal time”, without the program having any spe-
cial provision for such a display.

REFERENCES

[l] V. Paxson, C. Aragon, S. Pcggs, C. Saltmarsh, and L.
Schachinger, “A Unified Approach to Building Accel-
erator Simulation Software for t,he SSC,” Proc. 1989
IEEE Particle Accelerator Conf., Chicago, IL.

[2] V. Paxson and L. Schachinger, “Turnplot: A Graphical
Tool for Analyzing Tracking Data,” Proc. 1991 IEEE
Particle Accelerator Conf., San Francisco, CA.

[3] J. Bengtsson, E. Forest, H. Nishimura, and L.
Schachinger, “Modeling in Control of the Advanced
Light Source,” Proc. 1991 IEEE Particle Accelerator
Conf., San Francisco, CA.

FUTURE WORK [4] V. Paxson and C. Saltmarsh, “Glish: A User-Level
Software Bus for Loosely-Coupled Distributed Sys-

Other applications planned and in progress are one to mea- terns,” Proc. 1993 Winter USEWX Conf., San Diego,
sure and correct chromaticity, another to measure and cor- CA.
rect betas (both by varying quadrupole strengths and mea-

1942
PAC 1993

