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Abstract 

We describe a software system used at the Advanced Light 

Source for accelerator physics studies and accelerator control. 

The system consists of a number of Unix processes that can be 

connected together in modular ways. Processes communicate 

using messages with a common data format, but processes do 

not know where their messages come from or go to, making each 

process easily replaceable by others using different algorithms, 

measurement techniques, or models. Some of the controls and 

correction functions we have implemented using the system are 

closed-orbit correction, continuous tune display, and Fourier 

analysis of turn-by-turn beam position monitor (BPM) data. 

INTRODUCTION 

Over the lifetime of an accelerator, and particularly in the 
commissioning phase, programs which measure and correct 
machine parameters can change significantly. For instance, 
at the ALS our current orbit correction algorithm is the lo- 
cal bump method, but we plan to implement an algorithm 
based on Singular Value Decomposition in the near future. 
As diagnostics come on line and are better understood, 
preferred methods for measuring a particular parameter 
change. Currently we use a model to calculate tunes from 
magnet currents, but soon we will read the tunes from 
a spectrum analyser, or perform an FFT of turn-by-turn 
data from the BPM’s. These circumstances cry out for a 
modular, flexible approach, so that new correction algo- 
rithms or measurement techniques can be substituted and 
compared easily. 

TOOLBOX PHILOSOPHY 

VVe have long advocated a Yoolbox” approach to build- 
ing accelerator simulation and control software[l]. This 
approach emphasizes building applications by plugging to- 
gether modular, single-function programs. The goal is 
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to avoid monolithic, buggy, hard-to-maintain applications, 
and instead to stress having the flexibility to rapidly piece 
together new applications as the need arises. 

Crucial to this approach is the modularity of the indi- 
vidual programs t,hat comprise the toolbox. Each of these 
programs must be wholly self-contained; if we are to be 
able to connect the programs together in unforeseen ways, 
the programs must not assume anything about what other 
programs they might communicate with. 

We can achieve this degree of modularity by making the 
programs ecent-oriented. By event-oriented, we mean that 
we write programs in terms of events they receive, telling 
them what to do; and events they generate, publishing the 
results of whatever they did. Each event is a name (e.g., 
“compute tune”) and a value (typed data associated with 
the event). Event values can be quite large, as programs 
may have to communicate a large amount of data (e.g., 
computed ,& and & values at every BPM and corrector). 

Programs do not know anything about where the events 
they receive came from, nor where the events they generate 
go to. In this way, programs remain completely modular. 
By making the events generated by one program become 
the events received by another, we can forge a new ap- 
plication from the two programs even though neither was 
written with any knowledge of the other. 

THE GLISH SOFTWARE Bus 
An environment for connecting together these sorts of 
modular programs is sometimes called a software bus, in 
analogy with hardware busses that enable independently- 
designed hardware components to communicate. The soft- 
ware bus we use, called G&sh[4], was designed with accel- 
erator applications in mind. 

While programs are written for use with Glish in an 
event-oriented style, Glish does not limit the names of the 
events used by a program nor the struct,ure of the asso- 
ciated data. At first this might seem like granting the 
program writers too much freedom, since how can the pro- 
grams communicate if they don’t agree on data formats 
and naming conventions? 

The answer lies in Glish’s chief strength: Glish provides 
an interpreted scripting language, similar to that used in 
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shell programming, for piecing together applications from 
individual Glish programs. These scripts not only specify 
which programs to run, but can dynamically control what 
should be done whenever any of the programs generates 
a particular event. Here, ‘what should be done” includes 
possibly routing the event to another program (perhaps 
renaming it), and modifying the event’s associated data. 
Thus Glish offers a powerful sort of “glue” that we can 
use both to connect disparate programs, and to overcome 
their incompatibilities. If, for example, we want to use pro- 
grams written with different physical units, or sign conven- 
tions, or data structures, a Glish script can readily provide 
on-the-fly conversion between the two programs, without 
requiring any modification of any source code. 

A final benefit of Glish is that it supports transparent 
networking. Glish programs can run on different hosts and 
never know that their events travel over a network. 

ORBIT CORRECTION APPLICATION 

One of our principle simulation and control applications 
for the ALS is orbi2 correction. The present application 
we describe here evolved from that described in [3]. 

On the face of it, correcting the orbit of an accelerator 
is a simple task. Given the machine’s current trajectory, 
calculate the corrector settings necessary to flatten the tra- 
jectory; apply the new settings; and we’re done. So simple 
that we might be tempted to write a single program to 
deal with the entire task. 

In reality, though, many other factors enter into the ap- 
plication, and greatly complicate it. Correctors or moni- 
tors may be broken, disabled, or untrustworthy. We might 
need to use different hardware to read the first turn tra- 
jectory, before beam is stored, than the closed orbit, and a 
different correction algorithm in the two cases. We might 
want to average the position readings over a variable num- 
ber of turns. Beam position monitors (BPMs) have offsets 
due to engineering errors, correctors have calibration fac- 
tors for converting between radians of angle and amperes 
of current. We may have to apply corrections in steps, to 
avoid risking beam loss from overzealous correction. We 
may be able to use nominal phase and beta information 
for the accelerator, or want to calculate more precise val- 
ues. Our “goal orbit” may change from a flat trajectory 
for stored beam, to a betatron oscillation when injecting. 

Finally, we want a single application that can correct the 
orbit for both the ALS booster and the storage ring, taking 
into account all of the above factors. And we want to use 
this same application on-line, correcting the actual orbit, 
off-line for simulation using a modeling program instead of 
the actual hardware, and with data we previously archived, 
to try alternative correction strategies. 

Figure 1 shows how we built the orbit correction ap- 
plication using Glish. The boxes along the left and right 
edges represent different Glish programs, all of which con- 
nect to the central software bus. The dotted box at the 

bottom represents static information that the Glish inter- 
preter reads from data files and disseminates to those pro- 
grams needing it. 

The “Simulation / Accelerator” box represents one of 
two programs: either our modeling program (Teapot), for 
simulating orbit correction, or access to the actual accel- 
erator hardware, for on-line orbit correction. The Glish 
script picks which of these t,wo programs t,o use based on 
the script’s run-time arguments. 

Arrows indicate the events received and produced by 
each program. Note that there is not necessarily a one- 
to-one correspondence between an event produced by one 
program and an event sent to another program. Sometimes 
the Glish script itself deals directly with these events. For 
example, while the User Interface might request the cur- 
rent trajectory using a “get orbit” event, the Glish script 
decides whether to pass that event along to Simulation / 
Accelerator as a “get closed orbit” event, or whether to 
use the separate program for First Turn BPM Readouts. 
In the latter case, the script must send several different 
events to the program, one first to trigger the hardware, 
and then ones to read the X, Y, and signal sum values. 
Each of these elicits a separate event in response. 

Picking between these two sources for the current or- 
bit illustrates a key point: t,he system can accommodate 
two very different ways of getting the beam position data, 
and it does so transparently to all of the other programs 
involved in the application. 

The orbit-correction application achieves all of the goals 
outlined above: we use it for both the ALS booster and 
the storage ring, both on-line, off-line to examine archived 
data, and off-line for simulation. A considerable amount 
of the application is done directly in the Glish script: con- 
verting between the units and sign conventions used by the 
different programs, incorporating BPM offsets and correc- 
tor calibration factors, averaging trajectories over multiple 
turns, applying fractional corrections. modifying first-turn 
readings based on the signal sum values, computing trajec- 
tory and correction statistics, and enforcing “fixed status” 
(e.g., “always off’) for devices whose status is erroneously 
reported by the hardware. 

TURNPLOT APPLICATION 

Another application we built using Glish is turnplot, a pro- 
gram for analyzing beam position data[2]. Turnplot is 
structurally simpler than orbit correction, but maintains 
the property that it can be run on either the ALS booster 
or the storage ring, using either live hardware readings, 
tracking data produced by a modeling program, or previ- 
ously archived data. Turnplot can analyze either a single, 
full turn of data (taken at each BPM), or an orbit scanned 
over every nth turn at a specified BPM. 

Turnplot can display tracking data as a turn-by-turn 
point plot, as a phase space plot, or as X/Y dat,a. In addi- 
tion, we can FFT tracking data to identify probable X, Y? 
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Figure 1: Structure of Orbit Correction Application 

and synchrotron tunes, display harmonics associated with suring tunes, and by reading turn-by-turn data from all 
those tunes, select alternate FFT peaks if a peak found au- the BP&I’s while exciting a betatron oscillation), one to 
tomatically appears unlikely, and display resonance plots measure and correct dispersion, and one to measure and 
for the identified tunes. correct linear coupling. 

TUNEPLOT APPLICATION 

A third application is tuneplot, for analyzing and control- 
ling the machine tune. Tuneplot displays the current tune 
values on a resonance diagram. Like turnplot, tuneplot has 
no knowledge of where the tune values come from, so they 
can be changed transparently, including using a spectrum 
analyzer, the BPM hardware, and values computed from 
the present magnet currents. Because whenever tuneplot 
is sent a “tune read back” event it updates its display, 
we can use tuneplot to continuously display the tune, com- 
puted in %eal time”, without the program having any spe- 
cial provision for such a display. 
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