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Abstract 

We propose a method here which allows the measure- 
ment of the cavity resonance frequency in a frequency 
range up to f5 kHz from the operating frequency. This is 
achieved by phase modulation of the incident signal with 
noise to drive the cavity with a broad band spectrum. The 
cavity resonance frequency can then be determined from 
the response signal of the field probe, which has a narrow 
frequency spectrum due to the high loaded Q of the cavity 
of 6.6 x 106, corresponding to a cavity bandwidth of 125 
HZ. 

Introduction 

The cavity tuning algorithms as presently implemented 
in the CEBAF RF control system rely on the accuracy 
of the detuning angle measurements. It is measured as 
the phase difference between the incident and transmitted 
RF power and due to hardware limitations not accurate 
at low-power levels, i.e., if the cavity is detuned by several 
bandwidths or at very low gradients. Phase offsets are 
changing as functions of temperature and power level or 
replacement of control modules. In many instances cavi- 
ties need to be tuned manually after accelerator shutdown. 
In this study, we propose a method to measure the cav- 
ity resonance freqency by driving the cavity with a noise 
spectrum. This is achieved by modulating the phase of the 
incident signal with a band-limited pseudo-random signal. 
The cavity resonance frequency can then be determined 
from the response signal of the field probe, which has a 
narrow frequency spectrum due to the high loaded Q of 
the cavity of 6.6 x 106, corresponding to a cavity band- 
width of 125 Hz. The presently used hardware allows the 
measurement of the cavity frequency in a range up to &5 
kHz from the operating frequency. 

Figure 1: Layout of the cavity resonance frequency mea- 
surement scheme. 

reference signal V2(t) = lV2le iwot from the master oscillator 
to generate a baseband signal y(2) = Vz(t)Vc(t). Our task 
is to generate a bandwidth-limited signal z(t) at the vector 
modulator (B), and then set a scheme to detect the cavity 
resonance frequency fc from the signal y(t) ouput from the 
vector demodulator (D). 

Generation of a Bandwidth-Limited Random Signal 

First, a real ideal bandwidth-limited signal u(t) for 0 < 
t < T, whose power spectrum SUU(w) satisfies 

is generated using the sampling theorem [1]: 

Layout of the Scheme 

The principle of the scheme is shown in Fig. 1. A signal 
VI(~) = IV, 1e-““0 from the master oscillator (A) is sent 
to a vector modulator (B), where VI(~) is modulated by a 
pseudo random signal x(t) = ei$(t). The power spectrum 
of x(t) is required to be a positive constant for IfI < 5 kHz 
and to be zero outside this frequency region. The output 
signal from (B) I/;“(t) = Vl(t)z(t) is then sent to the cavity 
(C), which excites the cavity at its resonance frequency fe 
(assuming Ifc -fo 1 < 5 kHz with fo = wo/27r). A sample of 
the accelerating field Vc(t), as the response to the incident 
signal l&(t), is detected by the probe coupler. Then at the 
vector demodulator (D) the signal Vc(t) is multiplied by a 

with Tb = 2a/Wb. Here ‘11, = u(nTb) are uniformly dis- 
tributed in the range (-l,l), and n runs from -Nl to 
hrz, with (Tl,T!) = (-lvlTb, _vzTb) fully covering the time 
range t = (0, T). 

Let u and ‘u be both ideal bandwidth-limited real pseudo- 
random processes independently generated using Eq. (2), 
and define a complex signal w(t) 
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It can be shown that zu(t) is an ideal bandwidth-limited 
signal. We can write w(t) in terms of the amplitude and 
the phase 

w(t) = Iw(t)lP(? (4) 
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(C) Cavity 

SU”(W) = SO Iwl<“Jb 

0 IWI>Wb’ 

u(t) = 2 .(,~b)si;a,;‘~,;b~’ 
n=-A’, 

(0 < t < T) 

(2) 

w(t) = u(2) + iv(t). (3) 
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Numerically it turns out that the signal formed from the 
phase variation of w(t) only, namely, 

z(t) = ei$(t) = w(t)/lw(t)l (5) 

is also a good approximation of a bandwidth-limited signal. 
This is shown in Fig. 2. 

Response Signal from the Cavity 

The analysis for the output signal y(t) of the overall 
system is given in this section. 

The pseudo random signal z(t) is multiplied by the sig- 
nal VI(~) from the master oscillator at the vector modula- 
tor (B), producing an incident signal fin(t) to the cavity, 

K”(t) = vl(Mt). (6) 

The cavity (C) acts like a forced oscillator with character- 
istic resonance angular frequency w, and damping constant 
cy. For an input signal v,.,(t), the cavity probe will detect 
a gradient Vc(t) which satisfies 

ii, + 2& + WFK = Xl&(t) (7) 

with X containing the proper units. Assuming Vc(0) = 
PC(O) = 0 and applying Laplace transform to Eq. (7), we 
get 

K?(t) = -$ J 
t 

t~-~(~-*‘) sinwL(t - t’) l&(P) dt’ 
0 

; t 
M - 

J wc 0 
e-Q(t-t’) sinw,(t - 2’) x,,(t’) dt’ (8) 

with w: = \/m. Here the relation Q/W, = l/2Qc < 
1 is used in Eq. (8) (Qe is the effective quality value of the 
cavity). The response signal Vc(t) from the cavity is then 
multiplied by Vz(t) f rom the master oscillator at the vector 
demodulator (D), which gives 

Yl = V2(qVc(q. 

Combining Eqs. (6), (8) and (9), we get 

(9) 

J 

t 

e-a(f-t’) sin wc(t - t’)V~(t’)z(t’) dt’. 
” 

(10) 
Together with VI(t) = IV, le- &’ and Vz(t) = IV21eiwot, one 
obtains 

t 
Yl(q = a1 

J 
e--a(t-*‘)eiwo(t-t’) sinw,(t-t’)z(t’) dt’. (11) 

0 

Here al = XIV V I/ 1 2 wc is a constant. Denote 6, as the cav- 
ity resonance frequency relative to WO, &, = w, - wg, and 
assume the overall output signal y(t) from the vector de- 
modulator (D) extracts from y1 (t) only the part containing 
the difference of the frequencies. It then yields 

y(t) = a 1’ e- O(t-t’)e-i&(t-t’),(~‘) dt’ 
(12) 

with constant a = a1/2i. By taking the first derivative of 
y(t) in Eq. (12) with respect to t, one can readily show 
that 

y(t) + (a + i&)y(t) = a z(t). (13) 

Given we, and thus knowing Gc, we can numerically inte- 
grate Eq. (13) to obtain y(t) in terms of x(t) as the simu- 
lation of the response signal of the whole system. 

Let the Fourier transform of the processes z(t) and y(t) 
be X(w) and Y(w) respectively, 

J 
O3 X(w) = 

J 

cm 
z(t)emiwt dt and Y(w) = Y(e 

-iwt &. 

-cc -a3 

(14) 
From Eq. (13) one gets 

Y(w) = ax(w) 
-i(w - Lq + CY. (15) 

The power spectra for the two processes are related by 

%,bJ) = 
Ill”&&> 

(w - (;1,)2 + ff2 (16) 

Power Spectrums 

It shows below that an estimate of the cavity resonance 
frequency can be yielded from the proper averaging over 
the power spectrum of the output signal y(t). 

In real measurements, the signal lasts only for a finite 
time period. The Fourier transform of the process y(t) for 
O<t<Tis 

Y(w) = 
J 

T 

y(t)emiwt. (17) 
0 

It can be shown that 

IY(w)12 = [Ieeiur T T(1 - M)(Ryy(T))T dr , (18) 

where (Ryy(‘))T is the finite time correlation function 

1 -. 
&d’)h = T _ 1~1 

i 

J 

T-14 
dt>y*(t + Id)dt CT < 0) 

‘T--T 

J 
y* (Mt + T) dt (r > 0). 

0 
(19) 

Applying a convolution to the integral in Eq. (18), one has 

IY(w)12 a & /= T ( si;~p;;~;2) 2 S&w’) dw’. 
00 

cw 
Here it is assumed (R,, (T))T M Ryy(r), and Z&(w) is the 
power spectrum 

O” &NW = 
J 

--03 Ryy(r)e-iw+ dr (21) 

with the correlation function Ryy(~) obtained by averaging 
over infinite random ensembles 

RYYW = wyywt+m~ (22) 
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The expression of ]Y (w)] 2 in Eq. (20) corresponds to view- 
ing the actual spectrum Syy(w) through a spectral window 
WT(LJ) 

W-(w) = ; (si;;T;2)2, (23) 

which provides a resolution of 6w = 27r/T [2]. Note 
,ll- K+(w) = S(w). 

The above results can be further generalized to view 
Syy (w) at any resolution 6w > 27r/T by setting a cut- 
off to the correlation time range. Given TM (TM < T), 
the spectrum with resolution SW = 277/T~ is obtained by 
changing the integration range in Eq. (18) from (-T, T) to 
(-TM,TM)> 

I 
TM 

= c?-~~‘T& - M)(Ryy(+T d7 (24) 
-T&f TM 

I 
00 

M --03 wTM((w - w’)svv (w’) dw’. 

Combining Eq. (25) with Eq. (16), one gets 

(25) 

[IY!4121 6w=2rr /TM 
sz lal2 /I w$rwj;?:;r’) dw’. 

(261 . , 
Note [Iy(w)121 &,=‘JT/TM samples S,,(w) at the frequency 
w = L;r, with width Aw = (Y and resolution bw = 27r/T~. 

When the resolution SW of [ ]Y(w)12] is comparable with 
the bandwidth Aw, the fine structures of S&(w) in Eq. (26) 
are smoothed out, giving rise to a well-behaved peak for 

ClY<w>121 centered at w = i;l,. This can be achieved by 
choosing TM = I/o. The cavity resonance frequency can 
then determined by the the frequency corresponding to the 
center of the peak in []Y(w)]~]~~=~~~. 

Numerical Results 

In the current problem we intend to have low-pass fil- 
tered signal z(t) = ei4ct) for 0 < t < 10 ms. The re- 
quired bandwidth limit is fa = 5 kHz (fb = wb/27r) and 
thus Tb = 100 ps. Two uniform random series u,, and V, 
were generated for n = (-200,300), or t = (-20,30) ms, 
and z(t) with the time interval At = 10 ,us is evaluated 
for 0 < t < 10 ms using Eqs. (2), (3) and (5). Figure 2 
shows that x(t) is a very good approximation of an ideal 
bandwidth-limited process. The simulation of the cavity 
response signal was obtained by numerical integration us- 
ing Eq. (13), with given relative cavity resonance frequency 
fc E fe - fc. By setting the cut-off time TM = l/o = 1.4 
ms in Eq. (24) (for Qc = 6.6 x 106), the power spectrum of 
y(t) is obtained as shown in Fig. 3. It shows that the 
central peak is well behaved and centered right at the 
given fc. The residual spectrum away from the central 
peak is caused by the remaining oscillations of the factor 
wTM(w - w’) in Eq. (26). 

The above simulation shows that the cavity resonance 
frequency can be revealed from the location of the central 
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Figure 2: Power spectrum for the input signal z(t). 

peak of the properly averaged power spectrum ]Y(w)12 for 
the output signal y(t). For the particular problem we are 
interested in, the cavity quality number Qe is high enough 
that the output signal y(t) is a sinusoidal signal with vary- 
ing amplitude. The frequency of Re[y(t)] or Im[y(t)] deter- 
mines the frequency offset from the operating frequency, 
and the direction of rotation of the vector y(t) indicates 
whether it is a positive or negative frequency offset. The 
validity of the scheme presented in this paper is currently 
under test by experiments. 
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Figure 3: Power spectrum for the output signal y(t) for (a) 
,& = 2 kHz and (b) fc = -1.6 kHz. 

Acknowledgement 

We wish t,o thank J. Bisognano for valuable discussions. 
The information provided by P. Gupta is also gratefully 
acknowledged. 

References 

[l] A. Papoulis, Probability, Random Variables, and 
Stochastic Process, 1965. 

[2] G. M. Jenkins and D. G. Watts, Spectral Analysis and 
its Applications, 1968. 

1911 

PAC 1993


