
Machine Protection System Algorithm Compiler and Simulator *

Gregory FL White Gregory Sherwin

Stanford Linear Accelemtor Center, Stanford University, Stanford CA 94305

ABSTRACT

The Machine Protection System (MPS) component of the
SLC’s beam selection system, in which integrated current is
continuously monitored and limited to safe levels through care-
ful selection and feedback of the beam repetition rate, is de-
scribed elsewhere in these proceedings.

The novel decision making mechanism by which that system
can evaluate “safe levels”, and choose an appropriate repeti-
tion rate in real-time, is described here. The algorithm that
this mechanism uses to make its decision is written in text files
and expressed in states of the accelerator and its devices, one
file per accelerator region. Before being used, a file is %om-
piled” to a binary format which can be easily processed as a
forward-chaining decision tree. It is processed by distributed
microcomputers local to the accelerator regions. A parent al-
gorithm evaluates all results, and reports directly to the beam
control microprocessor.

Operators can test new algorithms, or changes they make to
them, with an online graphical MPS simulator.

PROBLEM STATEMENT AND RATIONALE

The Machine Protection System (MPS) monitors, in real-time,
potential autogenic operational hazards of the Stanford Lin-
ear Collider (SLC). These include the ambient radiation of the
beam-pipe and its devices, vacuum, water and other critical
parameters throughout the accelerator.

The MPS’s purpose is to limit the integrated current of the
beam to any part of the accelerator to safe levels, while contiu-
uing to deliver beam with the desired parameters to the rest of
the machine; that is, to be minimally invtive. The extent to
which the current is lowered should be just enough to make the
SLC’s operation secure, but not so low as to make the cause of
the problem untraceable. If, for instance, acollimator is causing
a hazardous radiation shower in one section of the SLC, MPS
should tell the software system that selects beam configurations
to lower the current in that sector. MPS must return the beam
to its desired current and configuration automatically, 88 soon
as it detects that the fault has been ameliorated.

OVERALL SOLUTION METHOD

Other papers in these proceedings describe the MPS system in
general [l] and two of its subsystems[2][3]. Here we summarize
the overall solution strategy, so as to put the MPS Algorithm
Compiler and Simulator in context.

Devices and parameters deemed critical to the operation of
the SLC are connected via MIL-1553 to a VME based micre

*Work supported by the Department of Energy, contract DE
AC03-76SF00515

processor local to an accelerator region. These microprocessors
compute an MPS “algorithm”. The algorithm processors or
“AP”s are arranged in a two tier hierarchy, there being one Sn-
pervisor AP whose inputs are the outputs from the other APs
and whose output is fed directly to the beam control computer,
which then adjusts the next beam’s parameters. This process
ia repeated with each beam pulse. See figure 1.

L

Mom
-sl.o

yii’l

PC LJ
LDY

Q
bw&

Figure 1: MPS Data Interconnection Diagram

Since the devices which form the input to an algorithm, and
the available rtconfigurations of the accelerator which form
the output, are different for each sector of the SLC, a different
algorithm must be developed and tested for each algorithm pro-
cessor. For that reaSon, the algorithm “compileP and “simul~
tar” software were developed. They are two distinct programs,
their relationship being analogous to the compilers and debug-
gers used in conventional programming.

The following describes first the algorithm compiler (MPSL)
md then the simulator (MAS).

0-7803-1203-l/93$03.00 0 1993 IEEE 1881

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993

ALGORITHM COMPILER

First a computer language was developed in which the follow-
ing could be formally expressed: i. the states of devices ii.
the state of the accelerator, that is, where there is currently
intended to be beam, and iii. possible alternative accelerator
configurations, principally with regard to repetition rate. A de-
vice ‘state” is a device name in equality or inequality with one
of the values that device can report. A well formed algorithm
then describes, for all expected states of the accelerator in a
region, the conditions under which some specified alternative
machine configurations should be adopted.

:e
- LP92 . -Damm.tr.t1on for P&C 93.

/*
. . ~lqor,th. mmt.lns w taqWh. consl8t~nq Of tW bprP name*.

&” - -susU)- I “ICIA”

“ATE - ‘NLUIAT’L~ ,* N11 r.te Pwr*rc
“‘INN, 111’
*LIIWI-FS”
~LlrnI~W

I ,. L. be.. 1n m-c/If 11m1ted to 10 WI ‘/
,. S.ur In both UC. llmlrd Lo 10 Hz*/

sulPc?w - NPsT.*P.l.l.“PNvf’ -- “lwRTcTD’ s
Rlwr.AP92.a.~Pflm’ -- vnwRm*

(‘r Stopper’P M or m1wc-1

NLYATC - ‘sumNATE’ p AbPolutt .l”,mm nmdcd to run SLC l /

“ICY LI,~.II.:“LL”E- -- ‘CUISED” 6
PlCS.L131.102.-lxBLE’ -- ‘OK”

NmRLTc - “LrMrT~Nr~
PIGS L131.101.VWRESH~D” -- VK’ 1
PICS.L131.11! ‘MREs” A” -- ‘OK” ‘

P,CS.LIII.1,1 TNliIsN~A’ -- “OF.’

NCWATE - ‘FULUIATE’
; ,* default l /

SWPCWF - 1p~.~~91.1.‘maf’ -- ‘PWTECTD’ I’sroPPm IN”1

YCIIR~IIE - ‘ZmmhTc”
; ,’ default l ,

NATS - “L*“IT-“I- ,’ sm.. .r*rywhPrc 11m1ted to 10 nr. l /

!FmPmF - MF3T.AP92.~.~PnO~ -- wwmclQ’

N?xmhwz * “LLnrnArc’

V~.CI.LI,l.lI..““~L”C” -- -CwscD- ‘
PICS.Ll31.IDI.~cmLEoK-

Nnm*YT. - “LIMIT~_U)~

PICS.L~~~.~O~.‘~~CSH_D’ -- ‘OK*

CLC *cr.

Figure 2: Extract from an MPS algorithm for an AP

AN MPS ALGORITHM’S STRUCTURE
In the SLC timing system, a “beamcode” describes a beam in
terms of the accelerator devices necessary to propagate that
beam, and the times in relation to a fiducial that those devices
must fire. UBeamcode modifiers” define the repetition rate of
a beamcode, and in great part, where in the accelerator com-
plex beam from that beamcode can go. A Regional Beamcode
“group” is a set of beamcodes for running the accelerator for a
particular experiment. Call a disjunction of these groups then,
a “beampath”.

To identify exactly where beam in a given pulse will wind-up,
one needs to add a statement of the states of the beam stoppers.
Call a conjunction of stopper states a “stopper configuration”.

Then, for some disjunction of beampaths, for some disjunc-
tion of stopper configurations and for some target repetition
rate, a single Boolean expression in the states of local devices
is sufficient to specify whether that target rate can be adopted.

An algorithm is a list of expressions in local devices, one for
each repetition rate possible in each of the beampathlstopper

configuration possibilities. Once loaded with an algorithm, an
Algorithm Processor, within one beam-pulse (8.333 msec), de-
termines which beampath and stopper configuration xe in ef-
fect on that pulse, and starts to evaluate the expressions spec-
ifying the safety of each available repetition rate. It does this
from first to last, until it fluds an expression which is false, at
which point it concludes that the associated rate is the high-
est it can recommend. This meLDo there is one last repetition
rate per clause which is always true (has no expression) and
specifies the highest possible repetition rate in that part of the
accelerator.

ALGORITHM COMPILER FUNCTION

The primary function of the compiler is to translate each ex-
pression into a bit-mask on the ML1553 port data that each
device sends to its AP. The compiler prepares the data on a per
port basis. It provides a bit-mask for the location of interest-
ing data, and a second mask for the values of that data were
the associated expression to be true. The compiler acquires
the information about how the devices are wired from the SLC
database.

The output binary file is isomorphically very similar to the
input file. In addition it contains some information to help the
AP configure its data acquisition process optimally.

ALGORITHM SIMULATOR

The function of the MPS algorithm simulator (MAS) is to ver-
ify that recently developed MPS algorithms will perform as
intended. The simulator tests the software integrity of the al-
gorithms by providing the capability to simulate any possible
state of the accelerator and its associated hardware devices.
To accomplish this, the software attempts to simulate virtual
devices, and their trip conditions, to verify that the algorithm
performs according to design. Other beam and accelerator char-
acteristics are also simulated as inputs.

The great number of variables which the simulator controls
requires an extensive configuration procedure. This procedure
includes the selection of APs, algorithms, states for various de-
vices, beam groups, rate-limiting kinds, and states for stop
per devices (ie. stopper configurations). In addition to this
complexity, the software is event-driven (via individual button
pushes and item selections from lists) and not procedural, and
therefore much of the simulator software is exposed directly to
the interface-level software. This creates software vulnerability
issues.

To prevent improper or incomplete selections and to keep
track of the current configuration state of the simulator, the
program implements a state-machine using global variables.
Once the simulator is properly configured, the user can execute
a simulation and view the results and/or dump them to a file.
At the core of the simulator processing is the same algorithm
loading and evaluation software used in the algorithm proces-
sors to determine device trips and requested machine states.
Configuration information is converted into the equivalent of
MIL-1553level raw port data and beam data, as input to the
AP’s evaluation software. All input conditions and processing
results are presented in the simulator output.

The simulator is designed so that the user can then make mi-
nor modifications to the simulator configuration and repeat the
simulation. File inputs and outputs are also provided for most

1882
PAC 1993

Figure 3: Algorithm simulator screen showing the result of a test when two devices were tripped

of the configuration data to simplify setup for re-simulations
performed at a later time.

Since the MPS system is designed with devices subordinate
to APs, which in turn are subordinate to a supervisor AP, there
are several levels of operation which the simulator can perform.
At the most basic level, devices are configured as inputs to a
single AP. Additionally, individual APs can be configured as
inputs to a simulation of the Supervisor and its algorithm. At
the most complex level, devices can be configured as inputs
to APs, which in turn are used as inputs to the Supervisor,
hence simulating the entire MPS system from devices up to the
Supervisor.

The simulator has a MOTIF user-interface consisting of var-
ious buttons, display windows, and selectable lists. To begin
a simulation, the user must first select a mode of operation:
the simulation of a single AP (which may or may or may not
be a supervisor) and its direct inputs, or the simulation of the
entire MPS system (a supervisor at the device-level). Once this
selection is made, the user chooses an MPS algorithm and its as-
sociated AP from available choices presented in respective lists.
From this selected algorithm file, a list of beam parameters and
devicea relevant to the AP is accessed and used to prepare their
respective configuration portions of the simulator.

With an AP and an algorithm selected, the user .can con-
figure beun characteristics and virtual devices. Beam groups
and rate-limiting kinds are activated for the simulation through
selectable lists and button options. For devices, the user is
presented with a list of devices and their currently configured
states (ie. operand-equalities) to be used as input to the cur-
rently selected algorithm. To minimize the configuration effort,
all devices are initialized to healthy states. Upon selection of
any device, the user is presented with a list of possible states

to configure the device to. To enhance the possible use of the
simulator as a diagnostic tool, the user also has the option of
configuring the list of devices to the states that exist on the
running MPS system.

Once the simulator is configured, the user presses a button
to execute the simulation and to acquire output. As illustrated
in Figure 3 (cool screen capture), the output includes the algc-
rithm processor name, the algorithm path and lile names, the
name of the saved file of operand-equality configuration data (if
applicable), the beam group and rate-limiting kind, the stopper
configuration, the requested rate resulting from algorithm pro-
cessing, and individual device faults along with their trip levels
and severities. Since a single simulation can be configured with
multiple beam groups, rattlimiting kinds, APs and algorithms,
the output is formatted by grouping the results for each com-
bination of these inputs as 5f..tli& nere individual simulations.

The simulator has proved.to*be a useful tool in debugging
the MPS software. Since ihe simulator used the same algorithm
loading and evaluationQs&w~e used in the real MPS system
and was dependent.upon the integrity of the MPS compiler, it
served -as a .to$le+l software test platform from which to find
and correct sqftware errors in a vuiety of MPS software are=.

REFERENCES

[l] R. Chestnut et al. Machine Protection System for the SLC.
These proceedings. 1993.

[2] S. Allison et al. MPS VAX Monitor and Control Software
Architecture. These proceedings. 1993.

[3] K. Krauter, M. Crane. MPS Beam Control Software Ar-
chitecture. These proceedings. 1993.

1883

PAC 1993

