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Abstract 
From a systematic analysis of readings of the beam 

position monitors in the AGS Booster ring, combined with the 
transfer matrices between a few locations in the ring, 
calculated with MAD [l], the consistency of the model of the 
lattice has been tested. This technique has enabled us to (i) 
detect errors in the machine that subsequent survey during 
shutdown has confirmed, and (ii) to measure the actual 
circulating beam momentum offset. The method has proved 
rather general and convenient for accelerator diagnostics as 
part of a model-based accelerator control system and 
extensions are suggested. 

I. INTRODUCTION 

We had two motivations for this work. The first was 
specific: to find the displacement of the closed orbit and its 
angle and the momentum offset of the beam in the AGS 
Booster in order to calculate correct orbit bumps for injection, 
extraction and so on. The second was general: to set up a 
model based [2] algorithmic tool to search systematically for 
errors in the machine lattice and to check the agreement 
between the real machine and the model. For this, we have 
used the orbit data, that is, the values of the orbit displacement 
at each of the 22 orbit position monitors in the ring. In this 
work we have considered the effect of orbit measurement 
errors only as “noise”. Indeed, the purpose of the present 
paper, for lack of space, is mainly to show the principles of 
operation of the tool and to describe a few examples of 
application to the AGS Booster. 

II. THEORETICAL BASIS 

Consider three beam position monitors, or BPM’s: i, j, k. 
Here, beam position readings are 

(‘i ‘j xk)* (1) 

At BPM locations, the model (MAD) gives dispersions 
and their derivatives 

(Vi rlj 17k);(17’i r7'j V’k)* (2) 
The transfer between BPM-i and BPM-j is described by 

[[;)-$-[ ri”)li = Mq(;)-$(; )liY (3) 
with the (unknown) momentum offset of the beam 

6PlP3 
and transfer matrices between BPM’s, whose elements are 
expressed in terms of the machine’s Twiss functions Q, p, 0 M(‘,i) A B =c D’ c 1 
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Eq.(4) gives 
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with the definitions 
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Eqs.(4) are four to be solved for the four unknown 
quantities, the beam angle at the chosen PUE’s and momentum 
offset 

( Xii x’; x’ k ; &/P) * (7) 
Among several possibilities, let us choose the following 

strategy. Survey all PUE’s in the ring in groups of three, as 
follows 

1,2,3 2,3,4 3,4,5 . . . . . . . . 
and solve the system (5) for each group, in turn. If the 
machine is perfect and agrees with the model, there will be an 
unique solution for 

b-p/p x’, xt2 xl3 x’4 . . . . 
Otherwise, if one obtains different values when calculated in 
two different groups, it means that inside either group 
something is wrong, like a localized unexpected kick or an 
erroneous reading in a monitor. In the former case, to 
represent the machine with Eq.(4), the appropriate correction 
should be found and inserted in the transfer matrices. 

The procedure can be extended to analyze other locations 
in the machine, that we label with the index m, other than 
BPM’s. Once angles and momentum offset are established for 
a group of three monitors, using the transfer matrix between 
any one of them and m, one can predict position and angle 

%I cn 
at the new location. If at m there is no monitor, we will not 
know whether these values reflect the reality, but we know 
that, if at m there is anything unpredicted with the machine (or 
the model), the above quantities calculated from different 
groups of BPM’s will be different. In particular, they will be 
different if calculated by the same group by a clockwise or 
counter-clockwise transformation along the machine. 

It is easy to recognize if the error is due to a kick or to a 
monitor misreading. In the former case, there will be a 
different result when the calculation is performed with two 
groups of three that have an interval in common, and then we 
will search for the kick in that interval. In the latter case, the 
result will be different if calculated with two groups that have 
a monitor in common. 

The eventual kick 6x’ can be found in the following way. 
As a specific example, assume that results at m due to groups 
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(1,2,3), (2,3,4), (3,4,5) and then (6,7,8), (7,8,9) give the same 
result at m, while groups (4,5,6) and (5,6,7) give a different 
result. This may mean that there is an unknown kick between 
BPM’s 4 and 5, since the latter two groups have this interval in 
common. 

Now, since a partial solution of Eq.(5) can be written as 
follows 

‘i 

= p(j) x. 

(1 

J 

‘k 
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with the indices u and v being any two of i, j, k. The elements 
of P for a “good” triplet must be identical with the ones for a 
“bad” triplet, corresponding to the same data x. These 
elements can be expressed, after inverting the matrix in Eq.(5), 
in terms of the Twiss functions and, for the “bad” P’s, must 
contain the unknown kick. Finally, a system of equations is 
obtained (that we omit here for lack of space), that explicitly 
yields the kick, position and strength, in terms of the model 
(Twiss functions) and the measured BPM data. 

Another approach, convenient with fast workstations, is to 
fit the analysis of the measured data with an iterative series of 
MAD runs, containing varied kicks and/or simulated monitor 
reading errors. The results presented in the next section rather 
reflect this methodology. 

III. RESULTS 

Fig.1 represents the analysis of difference orbits in the 
AGS Booster measured at 22 BPM’s (two are physically 
missing), with an horizontal kick of about 2 mrad given to the 
beam in a position between BPM’s E4 and E6, actually very 
close to E6. We have plotted the resulting momentum offset 
and the position and angle at BPM C2 as a function of the data 
triplet used, referred for convenience to the position of the 
central BPM of the triplet.. The curves show a sharp bump in 
the E4-E6-ES region. 

We have somewhat reproduced the results with MAD 
(Fig.2), applied a 2 mrad kick in the same location. 

Fig.3 and 4 represent the analysis of orbit data with a 
forced momentum offset off 1.5 10-3. 

Finally, we mention that a similar analysis performed on 
the bare orbit during the 1992 operating year of the machine 
showed possible errors in the F6-region. A subsequent survey 
confirmed magnet misalignment there and ring inspection 
found an erroneous electrical connection in the coils wrapped 
around the vacuum chamber that are used to correct for eddy 
current multipoles. 
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Fig.1. Analysis of difference orbits in the AGS Booster with a kick of 2 mrad applied at location E6. Data calculated at C2 from 
successive BPM triplet data. The solid curve represents x [mm], the dashed curve x’ [mrad] and the dotted curve dp/p [1@31. 

1873 
PAC 1993



cz c4 cs cn 02 04 FE ~2 A4 A6 RB 82 84 86 BE C2 C4 

P-l I I I I I I I I I I 

' 
0 40 80 120 160 200 

distance (meters) 

Fig.2. MAD simulation of the effect on the orbit by a 2 mrad kick localized at E6. Same conventions as in Fig.1. 
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Fig.3. Analysis of difference orbits when the beam momentum was offset by -1.5 10m3. 
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Fig.4. Analysis of difference orbits when the beam momentum was offset by +I.5 10m3. 
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