© 1993 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the | EEE.

Control Software for EUTERPE

P.D.V. van der Stok'. F. van den Berk!, R. Deckers'. Y.van de Vijver,
J.LLM. Botman?, J.L. Delhez* and C.J. Timmermans®.
Eindhoven University of Technology
"Department of Mathematics and Computing Science

*Department of Technical Physics
P.O. Box 513, 5600 MB Eindhoven. Netherlands

Abstract

This paper describes the software design of the EUTERPE
synchrotron radiation facility. Applications are developed
as a set of separate programs. Services are exported from
these programs and can be used by other programs. The
programs are built from classes following the object ori-
ented programming paradigm. Objects are created from
these classes when the programs are distributed over a set
of processors.

The objects of the applications, which represent existing
accelerator related objects, also profit from standard facil-
ities provided by the control system software, like: adapt-
able acquisition and user dependent object views (e.g. B-
field for physicist and power-supply for engineer).

This approach makes the application software indepen-
dent of the underlying coutrol system structure. Applica-
tions do not see if the underlying structure is 1-, 2- or 3-
layered. Accordingly, the mapping of the application soft-
ware to the hardware can be postponed until the last mo-
ment. Once installed, the control system structure can be
adapted to new performance and flexibility requirements
without consequences for the application software.

[. INTRODUCTION

The Eindhoven University of TEchnology Ring for Pro-
tons and Electrons (Euterpe) is currently being designed
and constructed at the physics department of the Eind-
hoven Umniversity of Technology (EUT). The accelerator
is designed for the production of synchrotron radiation ex-
tending from the infrared to the ultraviolet {1]. Apart from
radiation production, the ring will also be used to study
beam dynamics and to assist in the teaching of accelera-
tor physics. In the same spirit the design for the control
system for the ring has been started. The design should
not be himited to the most cost effective way to control the
accelerator. but it should support accelerator countrol in
general. The object oriented method is investigated for its
applicability to accelerator cantrol. Claims about reusabil-
1ity. maintainability and simplicity [2] can be evaluated. In

0-7803-1203-1/93%03.00 © 1993 IEEE

this paper a summary of the main results is presented. A
more detailed treatment is found in [3]. The verification
of the object orientation claims is only possible in a later
stage wlen the control system is actually used and modi-

fied.

II. REQUIREMENTS

The requirements on accelerator control are motivated by
(1) the experimental nature of the installations, the dis-
tribution of the accelerator over a large area, (2) the of-
ten conflicting wishes of different user groups and (3) syn-
chronons actions of different accelerator components. Less
essential are the short time range of many phenomena and
the wish to access the equipment from personal computers
situated at widely dispersed locations.

The experimental nature of the installations leads to
changes in the type and amount of equipment to be con-
trolled. Also changing operational conditions require that
the relations between different components are frequently
modified. The flexibility of the control system that allows
additions and removals of pieces of equipment without ma-
Jor control system shutdowns is a major requirement.

During the lifetime of the accelerator, components break
down and are replaced by other components. For a high
availability of the accelerator. online modifications to the
equipment should be possible with a minimum of effort or
modifications to the application programs. Consequently,
the reconfiguration of the equipment and the associated
control system components should be possihle.

The physical distribution of the accelerator components
makes 1t attractive to group equipment at a number of
locations and to control this equipment from computers
situated at these same locations. The wish to control all
the equipment from one central control room and provide
some controlled access from individual workstations neces-
sitates the distribulion of the control system.

The different groups that build. maintain and operate
the accelerator have widely different views on the same
pieces of equipient. An engineer is interested in bit pat-
terns. a physicist in enrrent and field values. Consequently,
a prece of equipiment should offer multiple views for an ef-
fictent tmanipulation by a heterogeneous population.

1820

PAC 1993

Accelerator components ate grouped to construct higher
level components. Several magnets can be grouped to pro-
duce a higher order harmonic magnetic field; a phase and a
strength are the only required attributes of such a group.
At a lower level, the individual magnets still need to be
controlled by individual settings. At a lower level vet the
magnets are composed of a power-supply. the magnet sta-
tus equipment and the timing equipment. Jultidevel ac-
cess 1s a characteristic of accelerator control. Dependent
on the situation, groups of equipment or individual pieces
of equipment need to be accessed.

Applications can be invoked concurrently on different
computers. Many different applications often need values
from the same pieces of equipment (e.g. the beamn current).
The atomicity of groups of actions by the control system
has the results that: (1) the concurrent access to the same
piece of equipment by different applications needs to be
organized such that no invalid results are returned to the
applications and (2) when a series of actions or acquisitions
1s done, it is important that the results concern the same
time period and that all actions are completely executed
or not at all.

III. DISTRIBUTION

The distribution of the applications over the computers
is not usually supported by object ortented languages.
Therefore, an extension to Ct* has been developed called
DEAL [4]. This language allows the system designer to
define programs that contain all elements which constitute
one inseparable piece of coding.
a program) can export the procedures of classes and ob-
Jects which are visible to all code in the process. Other
processes can use these exported procedures and objects.
Procedures of other processes are invoked with the Remote
Procedure Call (RPC) paradigm [5]. These concepts are
shown in more detail in Fig. 1. In process (circle) A two
objects (rectangles with rounded angles) O1 and 02 are
present. The procedures (ellipses) O1.PO and O2.PO are
invoked simultaneously from process B. while an unspeci-
fied process NN 1s invoked from O2 in A.

The processes allow the separation of the control svs-
tem software into independent programs. which at a later
stage can be loaded on the target hardware. This strat-
egy makes the software as independent as possible of the
underlying hardware-structure. However, at a lower level
hidden to the application program writer. the operating
system should know the physical locations of the processes.

During the design of the software architecture, knowl-
edge about possible distribution configurations is nev-
ertheless required. When only one program that con-
tains the complete control-svstem information is devel-
oped, the later distribution of the program necessitates
that it is split into smaller programs. When the programs
are split into functional parts (e.g. one program for all
quadrupcle power supplies) and a geographical split is re-

A Process (1ustance of

Process B Process A
A0y PO N
/ Vo
| i O
| | 2
A

Figure 1: Processes and objects

quired later, the program splitting needs to be redone. It
15 important to realize as well that every time an object
in another process is invoked. time-consuming parameter-
copying and process-switching occur. The control-system
designer should verify that program splits are both func-
tional (i.e. reflect the structure of the accelerator) and
efficient (i.e. no unnecessary overheads are incurred dur-
ing execution).

IV, MULTI-LEVEL AND -VIEW ACCESS
The datamodule concept, as successfully defined at CERN
[6]. is eminently supported by object oriented languages
via inheritance. In Fig. 2. a diagrammatic representation
of the classes is shown. A rectangle represents a class and
the arrows represent inheritance relations. Visible proce-
dures and objects are drawn on the class (rectangle) edge
and internal (hidden) ones are drawn inside the class. The
equipment class (e.g. power-supply) inherits from the dif-
ferent views and the Device class. The Device class con-
tains one (or more) object(s) of the interface class that
represent the interface card(s). General facilities which
are always needed act upon the device such as: e.g., en-
able. disable. Access protection can be defined by adding
procedures not shown in Fig. 2 which handle protection
and access rights. The code for such an equipment class
can then be written by the person responsible for that par-
ticular piece of equipment without bothering him with the
less interesting other details already defined in the class
Device. The equipment class with all its views is exported
from the enveloping process. In the application process
that uses the equipment the object of the equipment class
is accessed with the view that suits the application.

The above multi-vzew access is complemented with a
multi-level access. A family constitutes a piece of equip-
ment to he controlled by an operator. It can be com-
posed of a power-supply. one or more magnets and a tim-
g module. At the family level, modifications to magnets
are defined in Gauss or other relevant units. At the lower

1821

PAC 1993

Device

/

1

" l Equipment
face |
—
{ proc-2 |

Figure 2: Inheritance from views

equipment level access can be defined in Amps or just bit
patterns depending on the view of the user. At the lowest
interface-level, the access is purely done in bit patterns.
At a higher level, families can be grouped to construct
accelerator parameters such as bumps or Q-values.

V. AToOMICITY

When a periodic access to the same equipment is required
by multiple applications, it is more efficient to access the
equipment at the highest required rate and to store the
values in memory. For example, the reading of Pick-Up
electrodes can be done every millisecond locally in one
computer. The different applications can then read those
values concurrently from memory and select the appro-
priate ones. When all applications access the equipment
directly, the accesses to the equipment have to be strictly
serialized to prevent inconsistencies and even equipment
damages. These sequential equipment accesses each take
longer than the simple memory location accesses. To re-
duce message overhead, multiple acquisition values can he
sent in one message. An advantage is that the data read
by different applications are identical and lead to the same
result 1 applications executing concurrently at different
locations.

The observer object has been introduced to support this
approach. It consists of an action that has to he executed
on a piece of equipment and a period that defines the in-
vocation rate. Different rates for different applications can
be defined. The observer object orders the rates and re-
turns the corresponding values to the correct applications.
Data are stored in shared objects that are read by the ap-
plication. An action may return one result from a single
ADC access or multiple results as provided by a transient
recorder. When reaaing the values, the application needs

to specify the first and last value and the total number of

values it wants to read.
Two modes of the observer object exist. A single access
mode, where only the latest result consisting of one or

1822

more values is returned and an averaging mode, where the
average of a series of values is returned.

When applications concurrently read the values from ob-
server stations, two problems may occur: (1) while the
application reads a set of values of one observer station,
the same observer station can be activated one or more
times, thus overwriting the shared object and leading to
inconsistent results and (2) when the values from related
observer stations are read (e.g. a set of pick-up stations),
these values are not automatically related in time. Con-
currency control algorithms based on time-stamping assure
that consistent results ave returned to the invoking pro-
cess [7]. Consequently, applications read data from sets of
equipment which are produced over the same time period
and multiple data from the same equipment will concern
one continuous tume interval.

The same concurrency algorithms also assure that mod-
ifications to related equipment are executed at roughly the
same times and to all equipment involved. When actions
on the same equipment are required by two conflicting ap-
plications, etther both actions are executed sequentially, or
one of the actions will fail with an error message that the
equipment setting is also modified by another application.

REFERENCES

(1] J.L.M Botman. Boling Xi. C.J. Timmermans, and H.L.
Hagedoorn. The EUTERPE facility. Review of Scien-
{fic Instruments, 63(1):1569-1570. january 1992.

[2] Bertrand Meyver. Object-ortented Software Construc-
tron. Prentice/Hall Int.. 1988.

[3] F. van den Berk. R. Deckers, and Y. van de Vijver.
Object oriented development of the control system for
EUTERPE. Technical Report ISBN 90-5282-249-2, In-
stituut vervolgopleidingen-TUE, 1993.

[1] D.K. Hamumer and O.S. van Reosmalen. An Object-
Oriented Model for the Construction of Dependable
Distributed Systems. In Proceedings of the Interna-
tional Workshop on Qbject Orientation and operating
Systems, Parls, september 1992,

[5] A.D. Birrel and B.J. Nelson. Tmplementing Remote
Procedure Calls. ACM Transactions on Computer Sys-
tems, 2(1):35-59. February 1989.

(6] M.C. Crowley-Milling. The Data Module, the missing
link in high level Control Languages. In Proceedings of
the drd International conference on Trends in On-line
Computer Systems, Univ. of Sheffield, March 1979.

(7] P.D.V.van der Stok and A.E. Engel. Shared Data Con-
cepts for DEDOS. 1In Proceedings of the 10th IFAC
workshop on Distributed Computer Control Systems,
Semmering, Austria. September 1991,

PAC 1993

