
Sharing Control System Software
Peter Clout

Vista Control Systems, Inc.
134 B Eastgate Drive, Los Alamos, NM 87544 USA

Abstract

Building a custom accelerator control system requires effort
in the range of 30-100 person-years. This represents a signifi-
cant investment of time, effort, and risk, as well as challenges
for management. Even when the system is successful, the soft-
ware has not yet been applied to the particular project: no cus-
tom control algorithms, either engineering or physics-based,
have been implemented; and the system has not been docu-
mented for long-term maintenance and use. This paper re-
views the requirements for sharing software between accelera-
tor control system projects. It also reviews the three
mechanisms by which control system software has been shared
in the past and is being shared now, as well as some of the expe-
riences. After reviewing the mechanisms and experiences, one
can conclude there is no one best solution. The right software
sharing mechanism depends upon the needs of the client site,
the client resources available, and the services the provider can
give.

I. PROBLEMS WITH DEVELOPING
CONTROL SYSTEM SOFTWARE

Sharing software is a solution; the problem is the risk, cost
and time taken to develop the control system software. Before
any application to the accelerator in question, the control sys-
tem software represents an investment of between 30 and 100
or more person-years [ref. I]. Multiplying this figure by any
developed country’s average programmer’s salary n ith over-
heads easily turns this into multi-million dollar investments
for just one pan, albeit important, of the overall control system.
If one then adds in the maintenance, support and improvement
of the software over the life of the accelerator, the number can
easily be multiplied by factors of between two and five to ob-
tain the lifetime cost.

Clearly, such expenditures should not be entered into without
examining the alternatives.

Apart from cost, the risk of the software being incomplete or
insufficient at the time it is needed is also a serious issue.

For the accelerator field as a whole, this problem is getting
bigger simply because the number of accelerators is growing as
new accelerator applications are developed. As evidence for
this one only has to plot the growth in the attend‘ance of the con-
ferences such as this one. One recent estimate [ref. 2, 31 for
providing desirable and reasonable control system user facili-
ties at the major accelerators world-wide adds up to in excess
of one billion dollars over ten years. The inference is that

0-7803-1203-l/93$03.00

0 1993 IEEE

unless changes are made, only a fraction of the requirements
wit1 be met.

II. TIIE VALUE OF SOFTWARE

Software is intellectual property and each piece of software
represents a solution to a problem or a component of a solution
to a problem. Like other forms of intellectual property, the val-
ue of a piece of software is derived from

1. Understanding of the problem.

2. Analyzing the problem and its requirements towards a solu-
tion.

3. Literacy with the techniques and skill with the associated
tools to be used.
4. Effort expended to provide the particular solution.

The first three could be thought of as setting the hourly rate
and the last item being the multiplier that sets the cost of a solu-
tion.

Software also represents a value to the user. This value is
measured by the overall satisfaction with the system. Basically,
what is the cost of not having that piece of the solution? There
is another component of the cost of software-risk. This is the
risk that the software solution to the problem will either simply
not be working when needed or will not fulfill one or more of
the requirements. Custom-developed software represents the
highest risk with the level of risk being determined by the size
and track record of the team working on the problem.

111. DIFFICULTIES IN ACCELERATOR
CONTROL SYSTEMS DEVELOPMENT

Accelerator control systems are large in the number of chan-
nels, complex in the engineering and physics of the process and
uncertain in the sudden appearance of new requirements. All
these factors are greater than they are in industrial systems. In
developing a control system, or any other system, one cannot
reduce the complexity of the system to a level below the basic
complexity of the application.

From the first operation of the accelerator, one can confident-
ly expect that the requirements on the control system will grow
rapidly and in unpredictable ways as the understanding of the
physics of the accelerator is developed and confirmed and the
needs of operations understood. There will be the need to lncor-
porate into the control system some of the basic physics codes
that were written for accelerator design rather than accelerator
operations. There will also be the need to incorporate control
algorithms developed during the R&D phase and also during
operations.

1801

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993

If the architecture and design of the control system hardware
and software are not structured, open and flexible, then ex-
panding requirements will be harder and harder to meet and the
result will be a nightmare to maintain. Very often, small con-
trol systems are required at the R&D stage of a project. The
ability to make a version of the final system available early on
will save work and simplifjr project integration.

Iv. REDUCING THE COST AND RISK OF
ACCELERATOR CONTROL

SYSTEM DEVELOPMENT

Table 1 lists some of the accelerator control system software
sharing. It will be seen that there has been an increasing pace of
software sharing in recent years as the advantages come to be
appreciated and the complexity of the requirements and the ba-
sic tools of computing increased rapidly (compare the Plot-10
graphics library with Xlib!). The industry has developed sof’t-
ware development methodologies and tools to support these
methodologies. These help to combat the complexity of the re-
quirements and reduce the development time for the solution.

Tools are also being developed to assist with the implementa-
tion of the design. Some of these are general-purpose tools
(Visual Basic, Object Vision, OBLOG, OBLOG CASE, Data-
views, SL-GMS, IDL, etc.) which reduce the writing of code,
and others are specific application shells or toolboxes (Factory
Link, LabView, VXL, Wonderware, Vsystem, Basestar, RTAP
and so on) Bach application shell or toolbox is targeted at a par-
ticular class of applications and allows the user to start devel-
oping the specific application as soon as the initial design is
complete. One can expect this picture to change rapidly in the
future.

V. ISSUES IN SHARING SOFTWARE

A. Architecture

The general hardware and software architecture of the sys-
tem will determine how easily the shared software will fit. This
section discusses some of the issues of the operating system in-
terface and the application interface.

1. Computer, Operating Systems, Graphics and Networking
Choices

It is unfortunately still true that it is a substantial job to port a
system developed using the full facilities of one choice of hard-
ware and software to a different family of choices. Improve-
ments in this area are slow but they are occurring (UNIX, PO-
SIX), although other market forces like Macintosh, MSDOS
and Windows/NT confuse this improvement.

2. Application Interfaces

a. I/O Hardware

In many of the more recent software architectures, this inter-

face is standardized so that the applications do not need to
know about the exact details of the hardware connection. Some
form of standardized hardware access is a requirement if soft-
ware is to be shared. This can be by using protocols such as are
being developed and used by the European Physical Society
Group on Experimental Physics Control Systems, or by using a
real-time database or, indeed, both.

b. Software Data Bus

This is a software data interface for communication between
the software components of the system. This can include a
real-time database and embedded features such as alarming,
data conversion and the storing of secondary information about
each item of data. Mechanisms such as pipes and local and re-
mote procedure calls are very simple mechanisms that know
nothing about the application. Many systems have built specif-
ic control system functions and communications on top of
these primitives.

c. User Interface

Different user interface environments can make the use of
software from another institute difficult. Clearly, the ASCJI
terminal interface is common to nearly all systems (remember
EBCDIC?) but there are a number of graphics interfaces in use,
although the two rather different low-level interfaces, X-win-
dows with Motif and MS-Windows, zue presently the primary
sofixvare interfaces.

d. Operating System Services

Programs directly use many services of the operating system
for which they are written. In this case there is often consider-
able re-engineering to be done to port the program to another
operating system. Here, even UNIX does not help as each
UNIX supplier has modified UNIX for their particular view of
their users’ needs. The POSIX set of standards will be a great
improvement once they are all finally agreed upon and com-

mercially available. It is unfortunate that the POSIX standard
most needed for accelerator controls, the real-time extensions,
is the one that is yet to be agreed.

The other operating system interface issue is the file system.
If one considers the three primary operating systems as MS-
DOS (and Windows), UNIX (in its many different flavors) and
OpenVMS (on the VAX and the Alpha/AXP) then one has three
different naming conventions and restrictions and three very
different sets of file structure capability.

B. Support and Maintenance

All software needs support and maintenance. This is either
provided in-house for the personnel costs involved, or it is pro-

1802
PAC 1993

vided by the supplier of the software for a fee. If no support is scribed below, with some of the advantages and disadvantages
available, it will still be a cost to the user because of the effort to listed. Table 1 lists some of the known software sharing experi-
get systems working and working effectively. Either way it will ences in the accelerator control system field.
be a cost to the user. For this reason, no software is free. Table 1: Software Sharing

C. Control

One of the reasons for the call for “open” systems is so that
users can feel in control of the system. Control means that re-
gardless of the unexpected requirements that arise during the
life of the system, the system can be adapted and grown to meet
those requirements. This is, of course, vital in research.

Origina tot-
First

Distribution
Date

Receiving
institutes

Method

CBRN/SPS

HMI [ref. 41

FNAL[ref. 51

D. Documentation

No software is complete until the documentation is written.
Experience here has been that this job is often not started until
the need is more than pressing. For software to be shared and
successfully used at another site, good documentation is re-
quired.

HMI [ref. 41

LANL/PSR

SLAC [ref. 61

1970

1978

1984

1985

1985

1986

DESY,KEK “AS-IS”

CRL, KFA “As-W

NSCC, Loma “As-Is”
Linda

cRL* Collaboration

KFA “As-Is”

BEPC, IHEP* “As-Is”
Duke U.,

Oxford Insttu-
ments

LANLflCS

VI, STAGES OF SOFTWARE SHARING

1987 mm,
BNL, CRPP,

CERN/LEAR,
GSI,

PSI. HMI, GA

“As-Is”

Using software engineering techniques, the results of any
stage of control system implementation can be shared in order
to reduce effort and improve quality. Clearly, the more stages
that are shared, the more cost and risk are reduced. These stages
are

CEBAF

vcs

LANL [ref. 71

1. The concepts of the system and the understanding of the
problem

2. The analysis of the problem
3. The design of the solution

4. The implementation of the solution, the basic system with-
out the specific application

5. The complete implementation including the application

The ability to share stage one and stage two are only
constrained by the type of accelerator and its operation require-
ments (such as the need for super-cycles).

1989

1990

1990

Bates, SSC,
LLNL, etc

Various

m-L/J=%
Duke U.,

LBL, SSC

“As-Is”

Commercial

Collaboration

*Application pogroms Also Used

Also included for comparison is the case of an institute devel-
oping their own system, the “roll-your-own” method. The list
is ordered in decreasing cost, development time and risk.
Where costs and effort are mentioned, they are for the basic
system to the point that it is being implemented for a particular
project and they do not include any application effort.

A. Roll-Your-Own Method

Sharing the design of the solution will require accepting
some constraining technical choices, such as networks, com-
puter and operating system and so on. However, this is not such
a strong constraint at the design phase as it is in the last two
phases when actual executable code is shared.

Depending on the software engineering tools used, non-
executable code can be shared in the analysis and design
phases.

Here the institute develops their own system using basic
computing tools.

VII. METHODS AND EXPERIENCES IN
SHARING COMPLETE ACCELERATOR

CONTROL SYSTEM SOFTWARE

To date there have been three methods of sharing software.
These are “As-is,” Collaboration and Commercial. Each is de-

Advantages

1. Complete control of the software function.

2. Free choice of computers, displays and I/O system.

Disadvantages

1. Considerable initial development cost, $2.2-2OM.*

2. Considerable risk.
3. Highest support and maintenance cost, 4-20 people,

$3OOK-$4M/yr.*

* Programmers are assumed to cost between $75K/yr at salary plus
overltead and %ZOOK/yr. at salary, overbead and burden costs.

1803

PAC 1993

B. ‘As-Is” Method

Here the complete software, including sources, and any doc-
umentation is provided from another institute on an “as-is” ba-
sis. Recipients then have to develop and support the software
on their own, thus the software provides a substantial initial
start to a project. Of course, the recipient can call for either free
or paid help from the source institute of the software and, in
practice, this has often been given. However, the people who
wrote the software initially usually have to respect the sched-
ules and demands of their home institute first; therefore, the ex-
ternal requests usually create added pressure with little recog-
nition or reward.

Advantages

1. Significant design and implementation work are saved.
This is probably valued at about 60% or more of the “roll-
your-own” cost.

2. Experience from another project is used initially.

3. Receiving institute has full control of further development.

4. Considerable risk reduction, the amount depending on the
further development required.

Disadvantages

1. Local continuing support and development costs incurred.
This can easily add 4-20 people to the stafting requirements at
a cost of $300K-$4M/yr*

2. Local variations of the “as-is” software are usually devel-
oped, inhibiting further sharing between the institutes.

3. Software developed for in-house use is not usually engine-
ered to be easily installed by other sites. Thus, there will be a
steep and costly learning curve.

4. Distribution of the software adds a load on the writers of the
software in the form of preparing and making distributions and
answering support requests. This is not often offset by recogni-
tion or reward from their home institute.

5. Restricted, if any, choice of computers and I/O system.

C. Collaborations

In this form of software sharing, one institute takes the lead
and provides the initial software that is then further developed
by a group of institutes under some form of common manage-
ment. The key requirement of a collaboration is that the control
system software remains one system with no local variants. If
local variants develop then the relationship is likely to move
from a collaboration to an “as-is” relationship.

Advantages

1. Sharing of development costs.

2. Broader experience feeds into the requirements for new re-
leases.

3. Considerable risk reduction.

Disadvantages

1. Cost of local support and development team, 3-8 people at
a cost of between $225K-$1.6M/yr. *

2. Complexity and expense of management between different
institutes to keep the software common. Frankly, this is an
achievement in a single group or institute! This management
issue also results in a loss of local control for development de-
cisions and relies on goodwill between the members.

3. Restricted, if any, choice of computers and I/O system.

D. Commercial Systems Developed for Accelerator Controls

In this software sharing model, a company, through normal
commercial arrangements, effectively becomes the control
system software group for the customers. Experiences with
institutes using commercial control systems developed initial-
ly for industrial applications has been poor because of the addi-
tional requirements of physics research applications that are
uncommon in industry. My company is the only example that
has started with the physics market for developing, selling and
supporting a control system toolbox. As far as I am aware, no
other company has more than a single control system sale ac-
tive in this market.

Advantages

1. Minimal support and development costs, a fraction of aper-
son locally and $4.5-50K/yr support and maintenance ch‘arges
to the supplier, total, 23-15OK/yr.*

2. Considerable risk reduction that is essentially complete if
the products meet the requirements as demonstrated before the
sale.

3. Support is available and of good quality because of broad
support experience of the company personnel and the direct re-
ward to the company and the employees of the company for
good product and support.

4. The company normally controls the key sources, ensuring
compatibility and the ability for customers to share code be-
tween themselves.

5. Company can and is motivated to provide application help
at critical times to customers.

6. Product is engineered for distribution and installation and
documentation is provided.

Disadvantages

1. Initial license cost, in the range of $30K to $350K.

2. Control depends on the documented “openness” of the
product.

3. Issues of the company failing have to be addressed.

4. Restricted choice of computers and I/O system.

1804

PAC 1993

Figure 1 illustrates the minimum and maximum costs likely ics codes, control programs for accelerator specific tasks and
to be incurred by each method over a ten year period. so on.

0.10
Roll-Your-Own As-Is CollaborationCommercial

Nofe: Logarithmic Scale

Figure I: lo-Year Control System Software Costs

It should be noted that the commercial solution has an order-
of-magnitude cost advantage. This is because of the efficien-
cies of commercial operations and the economies of scale, as
well as engineered, tested and documented software.

VIII. SHARING SOFTWARE COMPONENTS
OF A SYSTEM

For this to be successful, the interfaces as listed above have to
be the same or the differences must be manageable. If the data
bus is common, the problem is almost completely solved and
some agreement here would greatly facilitate software sharing.
The other interfaces will be as influenced by the market forces
as by our community.

Experiences here have been to successfully use some of the
physics beam analysis codes within a control system and to use
commercial products for a part of a control system. Past results
here have been mixed, usually because the commercial prod-
ucts chosen were developed for small industrial applications.

IX. PLANNING FOR THE FUTURE

The accelerator controls community has a choice. It can let
the commercial products develop and use them as it can or it
can be proactive in influencing the commercial developments.
In parallel with the first option of commercial laissez-faire, the
community can continue to develop its own systems and share
them as before. The basic problem with this approach is that it
will greatly slow the development of commercial solutions that
are focused on the class of applications represented by acceler-
ator control systems. There are two ways to influence commer-
cial developments. One is for the community to be a significant
customer of one or more software companies and the second is
for the community to develop broadly applicable standards and
to purchase products based on those standards.

[l] A. Daneels, “Current Trends in Accelerator Controls: The
Issue of Accelerator Software, Particle Accelerators,
1990,” Proc XIV Intl. Conf. on High Energy Accelerators,
Vol. 29, p. 875, Tsukuba, Japan, Gordon and Breach Publ.

[2] B. Kuiper, Private Communication

[3] B. Kuiper, “Issues in Accelerator Controls.” Proc XIV Ml.
Conf. on High Energy Accelerators, Vol. 29, pp. 602-611,
Tsukuba, Japan, Gordon and Breach Publ.

[4] Winfried Busse, Private Communication

[5] Peter Lucas, Private Communication

[6] Sam Howry, Private Communication

[7] L.R. Dalesio, M.R. Kraimer, and A.J. Kozubal, “EPICS
Architecture,” Proc. Id. Conf. on Accl. and Expt. Phys.
Conrl. Sxs., Nov. 1991, KEK, Tsukuba, Japan, KEK
Proceedings 92-15

The developments one might look for in a commercial pack- \‘system is a trademark ofl;rista Control Systems, Inc. Orher prodtrcts
age that is specifically designed for accelerator control are in- mentioned might he trademarks and are mentioned for idenlificalion
terface packages for incorporating some of the standard phys- purposes only.

X. SUMMARY

Methods of sharing software, either in analysis and design
stages or in the complete system, have been defined with the
advantages and disadvantages explored. Is there one right solu-
tion? Currently, I think that the answer is no. It depends on the
number and skills of the programmers available to the project.
If resources are scarce, then a commercial solution is the only
solution. If ample resources are available and the institute
wants complete control and will accept the risks, then an “as-
is” solution or “roll-your-own” solution is indicated. Between
these two extremes sits a collaboration such as the EPICS col-
laboration.

The important aspect of the choice is IO understand that a
choice is being made and there are advantages and disadvan-
tages to each choice. Equally important is to defer making any
component or personnel decisions until the overall strategy is
decided. If one starts by hiring systems programmers, one has
already eliminated some choices. Equally, computer, operat-
ing system and I/O subsystem decisions will restrict the
choices for the most expensive and risk-prone component of
the control system, the software.

XI. ACKNOWLEDGEMENTS

I would like to acknowledge the review and constructive
criticism of the draft of this paper by Peter Lucas of Fermilab,
and Axe1 Daneels and Berend Kuiper of CERN.

XII. REFERENCES

1805
PAC 1993

