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Abstract 

We study the saturat,ed state of an untapered free elec- 
tron laser in the Compton regime, arising after exponential 
amplification of an init,ial low level of radiation by an ini- 
tially monoenergetic, unbunched electron beam. The sat.u- 
rat.ed state of the FEL is described by oscillat.ions about, an 
equililbrium st,at,e. Using the two invariant8s of the motion, 
and certain assumptions motivat.ed by computer simula- 
tions, we provide approximate analyt.ic descriptions of the 
radiation field and electron distribution in the saturat8ion 
regime. We first consider a one-dimensional approxima- 
tion, and lat,er extend our approach t,o t,reat an elect,ron 
beam of finite radial extent,. Of note is a result on the 
radiated power in the case of an elect,ron beam with small 
radius. 

I. INTRODUCTION 

In this paper we study the saturated st.at,e of an unta- 
pered FEL in the Compton regime. Guided by the resulbs 
of simulations start,ing with a monoenergetic unbunched 
elect.ron beam and a low init ial level of radia.tion, we make 
assumptions which prove to give an accurat,e picture of 
what happens in the satur;Lt iou rrgi~r~, ‘1 lie solittions in 

the saturation regime are related to t,he initial contlit~ions 
by using the two invariants of t,he motion. Finally we ex- 
tend our one-dimensional model to t.rcat. an elect.ron beam 
of finit,e radial ext.ent, including the effect.s of t,he diffrac- 
tion of t,he radiation and the radiation focussing properties 
of the electron beam bunched by t,he FEI. int,ernction. This 
work will be presented in great.er drtail[l]. 

The starting point. of t,he analysis is t.he scaled equa- 
tions for the evolution of t.he one dimensional electron tlis- 
tribution and for the monochromat~ic radiat8ion field. The 
not,at,ion is tliat of Bonifacio et. a].[?.?] and t,he equations 
are 

da,- 

dr 
- Pj) 
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dpj- 
dr 

_ -a4eia, - A*e-i”~, 

dA 
dr = (ewioJ) + iA5, (3) 

wlicre IJ~ and i)j are the phase of the jth electron relative 
to the radiation and it,s (scaled) momentum deviat,ion, A4 is 
the (scaled) radia.tion amplitude at, t,he (scaled) longitudi- 
nal position r = 2pL,r, where 2~/k, is the wiggler period 
and p is the Pierce parameter, 6 is the detuning of t,he 
laser, and () is an average over the electron distribution. 

It is easy to show from Eqs. (l)-(3) that 

and 

(f)j) + j-41’ = Cl (4) 

C$ 
2 + 21m[A(e @)] - 6jA12 = C:! (5) 

are constants of the motion. For an initially monoener- 
get,ic unbunched electron beam and a low initial level of 
radiation, the constants Cl, C2 are taken to be zero. 

II. EQUILIBRIUM DISTRJBUTION 

In Fig. 1 we show a typical evolution of the radiation 
with 7. The field builds up exponentially as t,lie elecbrons 
bunch. Aft,er t,he bunched electrons are capt#ured in buck- 
ets, the radiat.ion oscillates wit,11 modest. amplit#ude a.bout, 
an equilibrium distribution. The approximations in our 
model are to consider only up t,o linear t,erms in the ampli- 
tude of these oscillat,ions, and t#o consider only the lowest 
harmonic frequency of these oscillat8ions. 

In Fig. 2 we show the phase of the radiation, which 
appears to be very nearly linear wit.h T. We t,herefore write 

.4 = (p + iQ)eivfTmTo) (6) 

and introduce t.hc equilibrium displaced electron phase 

4j(r) 
@j(T) f Uj + V(7 - TO) + ?r/2, (7) 

requiring u to be chosen such that, (4(i) = 0, where t,he 
prime stands for d/dr. For zero det,uning 6 = 0, we find 
in the satiirat,ion regime that all quantities oscillate about, 
an equilibrium stat.e for which 

P=Pu. Q=O. v=P& ($1 
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Figure 1: Evolution of radiat,ion field any)litude l.4 with Figure 3: The three distribut,ions, I<\i, (Ho - H)‘12 and 
T. Boltzmann plotted as functions of H defined in Eq. (10). 

1 iI 2c ‘0 

5: J!Cd I>l‘,t~nce T Figure 4: Elect#ron dist,ributions obtained from simulation 
for r = 20,40 plotted as functions of H. 

Figure 2: Phase of t,he radiat.ion field as a function of T. 
HI. EXPONENTIAL GROWTH REGIME 

(cosq4j) = P,3 , (sinf$j) = 0 , (4:) = 3$. (9) 

Equilibrium distribut.ions sat,isfying t,he condit.ions in 
Eqs. (8) and (9) can be constructed as f($,&) = F(H), 
where 

H = $92 - 2P. cos 4. (10) 

We have considered three widely different distributions 

fKV = NKV~(H- HoI (W[31 (11) 

f-,/? = N-,,z(H - Ho)- l/2 
(12) 

fo = Ngesp(--aH) (Bolt,zmann) (13) 

and find in all cases t#hat# PO = 0.81, in good agreement 
with Fig. 1. In Fig. 3 we show the three different dist,ri- 
but,ions plott,ed as a funct8ion of Il. And in Fig. 4 we show 
the electron distribut.ions obtained from t,he simulat.ions 
for r = 20, 40. The background from the elecbrons which 
are not, trapped is seen to be more or less independent of 
H, and the dist,ributions of t.he trapped electrons seenl~ to 
most resemble the Boltzmann dist,ribution. 

If we take two deriva.tives of Eq. (3) and consider only 
those terms linear in pj and A, we find, for 6 = 0 

d3A 
- = iA 
dr3 (14) 

The exponential growt.h regime then corre.sponds to the 
solution 

A(r) 2: -4oesp[(&+ j)T/2]. (15) 

When /A( is of order 1, non-linear terms in ,4,pj must 
be included, and some sort of saturation will take place. 

IV. SATURATION REGIME 

The saturated state of the FEL is described by oscillaCons 
about an equilibrium state[4, 5, G]. This equilibrium state 
corresponds t,o a st.eady state solution of Eqs. (l)-(3). The 
proper choice of t,he equilibrium solution is significantly 
restricted[4] by the two invariants of Eqs. (4) and (5), 
relating properties of the sat,urated state back to the initial 
condit.ions at, the start-up of the FEL. 
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We now consider oscillat~ions about t,he equilibrium dis- 
trihut,ion, defining the displaced electron phase as 

/3j(T) = aj(T) + V(T- T(b) + K/2. (16) 

Using Eqs. (6) and (16), we now write, wit.11 6 = 0, 

,$‘(T) = -2P sin ,/3j - 2Q cos pj (17) 

Q’ + VP = (cos,Bj) (18) 

P’ - vQ = (sin a,) (19) 

toget.her with the two invariants 

(/?;) + P2 + Q” = v, (20) 

(0;‘) - 2i@() + Y’ = ~P(COS @j) - 4Q(sill gj). (21) 

We now consider oscillations about the equilibrium dist,ri- 
but,ion of the form 

P( 7) = PO + Pl cos fir , Q(T) = Q1 sin Qr (22) 

pj (T) = f#Jj (7) + 0 sin 07, (23) 

where the oscillation of the electrons is assunred to be co- 
herent,. Keeping only t.erms linear in PI, Q1 and a, we can 
show[l] that Q = &Pi = 1.14, slightly smaller than t.he 
value 0 = 1.25 seen in the siniulat~ion in Fig. 1. 

V. TRANSITION F‘RORI THE 
EXPONENTIAL TO THE SATTJRATION 

RECiIME 

A plot, of dP/d T vs. P(r) froiii the simulatjion shows a 
straight line starting at (O,O), corresponding t,o the expo- 
nent,ial regime, approximately tangent t,o a repeated ellip- 
tical orbit centered at (0.8,O). corresponding to the oscil- 
lat.ion in t,he saturation regime. Post,ulat.ing t.liis inodel 
of approsimate tangency for t,hr t,rnnsit.ion frolii the es- 
poncntial to the saturation regilnc l<,ads to t hr predict.ion 
of PI 21 0.49, Q1 21 0.25, somewhat larger t,han the values 
PI E .40, Q1 zx .20 seen in the simulations. Considering 
t,he crude nature of the transit.ion ~nodcl, t.his agreement 
is quite good. 

VI. ELECTRON BEAM M:ITII FIKITE 
RADIAL EXTENT 

We now extend the single harmonic model considered 
above to the two-dimensional case of an electron heal11 
wif,h finit,e radial ext.ent,. \2’e ignore bet.a(,ron oscillat,ions, 
assuming the elect,ron beam has no angular spread, but, 
include t,he diffract.ion of t.hr radint,ion and the radiation 
focusing properties of the elcct.ron hcam buncllc~d by the 
FEL interact,ion. 

Thr equations for the electron motion arc‘ still those in 
Eqs. (1) and (2). But. Eq. (3) for t.he t~volution of the 
radiation is now changed t,o 

A’ - iV’A = u(7*)(fmioJ) (24) 

where ~(1‘) is the fixed electron beam density profile. We 
also take 6 = 0. The form of the two invarients is also 
changed somewhat. The scaled transverse coordinat,e is 
T = v”wrd where k, is the resonant radiation wave 
number and rd is the unscaled transverse coordinate vec- 
tor. 

The equilibrium state is now governed by the solution 
of the differential equation 

VP0 - V’Po(r) = U(T)(COS$j) , (Sindj) = 0 (25) 

and the modified invariants lead to 

v = so00 rye?+-) 
Jr r&w(r) ’ 

y* = Jo00 TdrU(r)(dT - 2PlJ COS $j) 

J; rdru(r) . (26) 

Explicit relations can now be obtained for these pa- 
rameters with the specific phase space distributions 

fcl(ff)tbb(ff), fdN). 
and for a given beam profile u(r). 

As a result of this analysis, we obtain an equilibrium 
guided solution and oscillat.ions about t#his solution. There 
are two types of oscillation modes! one guided and one 
corrresponding to radiation propagating to r = CO. The 
escape of the radition from the electron beam leads to a 
damping of the oscillations. Also, explicit results have been 
obtained[l] in the limits of large and small electron-beam 
radius. In particular, we find t,hat, for small beam radius, 

the radiated power is proportion to Zi’* where Zo is the 
current. This result is intermediate bet,ween the incoherent 
(lo) and fully coherent (1:) 1imit)s. 
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