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Saturation of a High Gain FEL”

R.L. Gluckstern! S. Krinsky? and H. Okamoto®

Abstract

We study the saturated state of an untapered free elec-
tron laser in the Compton regime, arising after exponential
amplification of an initial low level of radiation by an ini-
tially monoenergetic, unbunched electron beam. The satu-
rated state of the FEL is described by oscillations about an

Usmg the two invariants of the mntmn

v gtatn

Cqullllblllllll sLauvc.
and certain assumptions motivated by computer snnula—
tions, we provide approximate analytic descriptions of the
radiation field and electron distribution in the saturation
regime. We first consider a one- dimensional approxima-
tion, and later extend our approach to treat an electron
beam of finite radial extent. Of note is a result on the
radiated power in the case of an electron beam with small
radius.

I. INTRODUCTION

In this paper we study the saturated state of an unta-
pered FEL in the Compton regime. Guided by the results
of simulations starting with a monoenergetic unbunched
electron beam and a low initial level of radiation, we make
assumptions which prove to give an accurate picture of
what happens in the saturation regime. The solutions n
the saturation regime are related to the initial conditions
by using the two invariants of the motion. Finally we ex-
tend our one-dimensional model to treat an electron beam
of finite radial extent, including the effects of the diffrac-
tion of the radiation and the radiation focussing properties
of the electron beam bunched by the FEI interaction. This
work will be presented in greater detail[l].

The starting point of the analysis is the scaled equa-
tions for the evolution of the one dimensional electron dis-
tribution and for the monochromatic radiation field. The
notation is that of Bonifacio et. al.[2] and the equations
are
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where o; and p; are the phase of the j*™* electron relative
to the radiation and its (scaled) momentum deviation, A4 is
the (scaled) radiation amplitude at the (scaled) longitudi-
nal position 7 = 2pk,, z, where 27."/kw is the wiggler period
and p is the Pierce parameter, 6 is the detuning of the
laser, and () is an average over the electron distribution.

It is easy to show from Egs. (1)-(3) that
(p) +14)* = (4)
and .
(P;) ig 2 _
T+2Im[A(e 3] - 8|A|)F = Cs (5)

are constants of the motion. For an initially monoener-
getic unbunched electron beam and a low initial level of
radiation, the constants Cy,C> are taken to be zero.

[I. EQUILIBRIUM DISTRIBUTION

In Fig. 1 we show a typical evolution of the radiation
with 7. The field builds up exponentially as the electrons
bunch. After the bunched electrons are captured in buck-
ets, the radiation oscillates with modest amplitude about
an equilibrium distribution. The approximations in our
model are to consider only up to linear terms in the ampli-
tude of these oscillations, and to consider only the lowest
harmonic frequency of these oscillations.

In Fig. 2 we show the phase of the radiation, which

appears to be very nearly linear with 7. We therefore write
A= (P+iQ)e7-m) (6)

and introduce the equilibrium displaced electron phase

é;(7)
(1) = 03+ ot = ) 47 U

requiring v to be chosen such that (¢%) = 0, where the

prime stands for d/d7. For zero detuning 6 = 0, we find
in the saturation regime that all quantities oscillate about

an equilibrium state for which

P=P,.Q=0,v=P (8)
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Figure 1: Evolution of radiation field amplitude [A4] with
T.
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Figure 2: Phase of the radiation field as a function of .

(cos¢;) = Po , (sing;) =0, (¢ (9)

Equilibrium distributions satisfying the conditions in
Egs. (8) and (9) can be constructed as f(¢,¢") = I'(H),

where

~>’3P0

H=¢"/2-2Pcos¢. (10)

We have considered three widely different distributions

fxv = Nxvé(H — Hy) (KV)[3] (11)
f—l/Q:N—l/Q(H—HO)'I/Q (12)
fp = Npexp(—aH) (Boltzmann) (13)

and find in all cases that Py = 081, in good agreement
with Fig. 1. In Fig. 3 we show the three different distri-
butions plotted as a function of /. And in Fig. 4 we show
the electron distributions obtained from the simulations
for 7 = 20,40. The background from the electrons which
are not trapped is seen to be more or less independent of
H, and the distributions of the trapped electrons seems to
most resemble the Boltzmann distribution.
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Figure 3: The three distributions, KV, (Ho — H)/? and
Boltzmann plotted as functions of H defined in Eq. (10).
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Figure 4: Electron distributions obtained from simulation
for 7 = 20,40 plotted as functions of H.

[II. EXPONENTIAL GROWTH REGIME

If we take two derivatives of Eq. (3) and consider only
those terms linear in p; and A, we find, for 6 =0

A

—d—TE:iA.

(14)
The exponential growth regime then corresponds to the
solution

A7) ~ Agexp[(V3 + i)7/2]. (15)

When |A(7)| is of order 1, non-linear terms in A, p; must
be included, and some sort of saturation will take place.

IV. SATURATION REGIME

The saturated state of the FEL is described by oscillations
about an equilibrium state[4, 5, 6). This equilibrium state
corresponds to a steady state solution of Eqgs. (1)-(3). The
proper choice of the equilibrium solution is significantly
restricted[4] by the two invariants of Egs. (4) and (5),
relating properties of the saturated state back to the initial
conditions at the start-up of the FEL.
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We now consider oscillations about the equilibrium dis-
tribution, defining the displaced electron phase as

Using Egs. {(6) and (16), we now write, with 6 = 0,

ﬂ;'(r) = —2Psin 8; — 2Q cos §3; (17)
Q'+ vP = (cos ;) (18)
P —vQ = (sin 8;) (19)
together with the two invariants
() + PP+ Q= v, (20)

([3} y — 21/(6]') + v? = 4P{cos B;) — 4Q{sin 5;) (21)

We now consider oscillations about the equilibrium distri-
bution of the form

P(r)y= Py + PicosQr, Q(1) = Q1 sinf2r (22)

Bj(t) = ¢;(7) + asin Qr, {23)

where the oscillation of the electrons is assumed to be co-
herent. Keeping only terms linear in P, and @, we can
show[1] that Q = /3P§ = 1.14, slightly smaller than the
value 2 = 1.25 seen in the simulation in Fig. 1.

V. TRANSITION FROM THE
EXPONENTIAL TO THE SATURATION
REGIME

A plot of dP/dr vs. P(r) from the simulation shows a
straight line starting at (0,0), corresponding to the expo-
nential regime, approximately tangent to a repeated ellip-
tical orbit centered at (0.8,0). corresponding to the oscil-
lation in the saturation regime. Postulating this model
of approximate tangency for the transition from the ex-
ponential to the saturation regime leads to the prediction
of P, ~ 0.49, Q1 ~ 0.28, somewhat larger than the values
P~ 40,Q, ~ .20 seen in the simulations. Considering
the crude nature of the transition model, this agreement
is quite good.

VI. ELECTRON BEAM WITH FINITE
RADIAL EXTENT

We now extend the single harmonic model considered
above to the two-dimensional case of an electron beam
with finite radial extent. We ignore betatron oscillations,
assuming the electron beam has no angular spread, but
include the diffraction of the radiation and the radiation
focusing properties of the electron beam bunched by the
FEL interaction.

The equations for the electron motion are still those in
Egs. (1) and (2). But Eq. (3) for the evolution of the

radiation is now changed to

AT —iV2A = u(r){e7') (24)
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where u(r) is the fixed electron beam density profile. We
also take § = 0. The form of the two invarients is also
changed somewhat. The scaled transverse coordinate is
r = \/dpk,k,rq where k, is the resonant radiation wave
number and 7, is the unscaled transverse coordinate vec-
tor.

The equilibrium state is now governed by the solution
of the differential equation

2 — . i N\ =
vPy = V2 Py(r) = u(r)icosd;) , (sind;) =0 (25)
and the modified invariants lead to
oo 2
- fo rdrP§(r)
- o0 )
Jo rdru(r)
Y 2 .
i ad . ’”~ — .
s Jo rdru(r){ej — 2P cos ¢;) 96
B foo rdru(r) ' (26)
0
Explicit relations can now be obtained for these pa-
rameters with the specific phase space distributions

falH), by (H), f.(H), and for a given beam profile u(r).

As a result of this analysis, we obtain an equilibrium
guided solution and oscillations about this solution. There
are two types of oscillation modes, one guided and one
corrresponding to radiation propagating to r = oco. The
escape of the radition from the electron beam leads to a
damping of the oscillations. Also, explicit results have been
obtained[1] in the limits of large and small electron-beam
radius. In particular, we find that, for small beam radius,
the radiated power is proportion to 13/2 where I is the
current. This result is intermediate between the incoherent
(Io) and fully coherent (I3) limits.
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