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Abstract I. INTRODUCTION 
Es paper presents the dynamic response analysis of the 

photon source synchrotron radiation storage ring (Figure 1) excited 
by ground motion measured at the Lawrence Berkeley Laboratory 
advancedlight sourcebuilding site [ 1,2].Thehighspectral brilliance 
requirement the photon beams of the advanced light source storage 
ring specified displacement of the quadrupole focusing magnets in 
the order of 1 micron in vertical motion [2]. There are 19 magnets 
supported by a 430-inch steel box beam girder. The girder and all 
magnets are supported by the kinematic mount system normally 
used in optical equipment. The kinematic mount called a six-strut 
magnet support system is now considered as an alternative system 
for supporting SSC magnets in the Super Collider. The effectively 
designed and effectively operated six-strut support system is now 
successfully operated for the Advanced Light Source (ALS) 
accelerator at the Lawrence Berkeley Laboratory. This paper will 
present the method of analysis [3,4,5,6] and results of the dynamic 
motion study at the center of the magnets under the most critical 
excitation source as recorded at the LBL site. 

Ground motion at the ALS site was measured from 4 to 100 Hz. 
The measured noise based upon 2% damping is about 0.1 microns. 
The significant mode of frequency for the storage ring is about 3 Hz 
and the damping coefficient is below 1%. Dynamic motion of the 
quadrupole focusing magnet (QF) is designed for a maximum 
1 micron vertical motion limit to obtain photon beams with high 
spectral brilliance. This analysis predicts that the vertical motion of 
the quadrupole magnet should be below 0.8 microns based on an 
assumption that 0.5% damping composite is designed for the ALS 
storage ring system. 

II. METHOD OF ANALYSIS AND MODELLING 

The response spectra method [S], see Figure 2, is used as the 
computation technique in the present analysis [7,8,9,10]. Finite 
element method [6] is employed for the storage ring modeling. The 
actual spring constant for the six-strut system is experimentally 
determined. The strut spring constant has significant effect on the 
dynamic behavior of the storage ring structural system. An integrated 
finitemodel includes the steel girder, magnets, vacuum chamber and 
the six-strut supporting system. The ground motion is expressed as 
spectra [ 51 that is the envelope of all the individual responses from 
0.5 Hz to 100 Hz. The spectra is applied at the floor slab level. The 
soil-structural interaction is included in the spectra as long as the 

location of the measurement of the ground motion is representative 
of strut’s anchoring points and no major building is erected to 
influence the soil-structure interaction. 
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The eigenvector and eigenvalue of the normal mode are first 
calculated. The modal spectra displacement, participation factors 
and effective mass are then evaluated for each mode. The modal 
dynamic motion is combined to give the maximum displacement 
response at the interested point. The method of modal sum [7, 8, 
9,101 combination is based on the method of square root of 
the sum of the square for the non-closed spaced modes. For closed 
spaced modes, the algebraic sum method is used. The response 
spectrum is applied[ lo] at three directions, x, y, and z, indepen- 
dently. 

III. GROUND AND SEISMIC MOTION 
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Figure 2. ALS Ground Motion Spectra. 
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IV, RESULT OF DYNAMIC ANALYSIS 

A three-dimensional model dynamic analysis is used to predict 
the actual response of the girder system from specified ground and 
earthquake motion as shown in Figures 2 and 3. The dynamic model 
includes correct mass point selection in each magnet to represent all 
significant modes. Coupled equipment masses and compliance are 
incorporated in the system mathematical model. The results of the 
finite element analysis are shown in Figure 4 for the maximum 
vertical deflection of each magnet in the ALS storage ring. The 
maximum vertical deflection for the focusing magnet is specified as 
1 .O microns. The vertical deflection for the quadrupole magnet QF2 
is 0.7 microns as shown in Figure 4. The ALS storage ring structural 
dynamic design appears to be successful. The design for controlling 
the ground motion response is based on selection of the boxed beam 
for maximum torsional rigidity for the steel girder, and arranging the 
six struts in the most effective position to limit the vertical response 
to the focusing magnets. The seismicdynamic design involves many 
structural components design including the welding, connection 
bolts, six strut system for each magnet, the plate, web, girder, and 
six- strut system for the storage ring. 
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Figure 3. ALS Store Ring Magnet Vertical Displacement. 
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The most critical structural component of the supporting system for 
the storage ring is the six strut that supporting the girder (Figure 5) 
because there are no redundant supports for the storage ring. The 
buckling loading capacity(Figure 6) for the strut is about three times 
larger than the seismic load and the seismic design of the ALS 
storage ring is therefore acceptable. An earthquake of 7.1 magnitude 
occurred at 100 miles from the ALS site in 1989 before the ALS 
storage ring structure is completed. 
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Figure 5. Total axial load for each of the six struts. 
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Figure 6. Comparison of seimic load and allowable 
buckling load on the six strut. 
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