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Abstract 

Cold beam pipes like in SSC or LIIC require shielding tu- 
bes with pumping holes called liner. As a first approxima- 
tion instead of holes a tube with an arbitrary number of 
rotationally symmetric interruptions is analyzed using the 
mode-matching-technique. Results are presented for the 
longitudinal coupling impedance. 

I Introduction 

For cold beam pipes like in SSC or LHC coaxial wave- 
guides are required where the inner conductor shields the 
outer surface from synchrotron radiation. The pumping 
holes in the inner conductor represent a coupling impe- 
dance of the beam to these discontinuities. For small holes 
this impedance can be obtained according to the Bethe 
theory of diffraction [I]. ? ‘o avoid limitations w.r.t. the 
size and number of holes as well as the thickness of the 
inner conductor we use the mode matching technique to 
get an accurate solution. 
To fit the surfaces of the structure to coordinate surfaces 
Q,~,z = con&. we have to restrict ourself to holes with 
rectangular cross section (Fig.la). But as a first approxi- 

Figure 1: scetch of a liner 

mation we will treat the simplified arrangement as shown 
in Fig.lb. Later the analysis described below will be exten- 
ded to the really three dimensional problem of holes with 
rectangular cross section. 

II Scattering matrix and excita- 
tion vector for one single cell 

Let us assume a charged particle & moving with the velo- 
city of light parallel to the axis with an offset P. The m-th 
azimutal spectral components of the electromagnetic field 
in the frequency domain are well known if the surrounding 
vacuum chamber is smooth. To take the discontinuities 
into account we first separate the whole structure into cells 
(Fig.2). Due to the symmetry of one segment we split the 

Figure 2: one segment of the rotational symmetric liner 

exciting field E, in two standing waves with a phase shift 
of 90” w.r.t. time and position 

Ei - le--.i(~d/2+*,) 
E: 2 {e- 

jhOzy ~fl ejhz,-~ 
(1) 

where ko = w/co and @,+I = Qpy + kol. 
In- and outgoing TE and TM waves exist at the considered 
two ports of one segment. The amplitudes of them we call 
Al,2 and B~J respectively. Now we introduce the wave 
amplitudes A’, A”, B’, B” referring to the excitation (1). 
Then we have 

A’ AlfAz B’ & fB2 
A” = 2 ; B,, = 2 ’ (2) 

On the other hand we can write the relation between A 
and B in matrix form 

( 2 ) = ( 2 2 ) ( 2 ) + ( 2 ) 
(3) 

( :,: ) = ( ; ;, ) ( 2,; ) + ( ;,1 ) 
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After calculation of the reflection matrices S’, S” and the 
excitation vectors W’, W” as dcscribcd below the matrices 
S11, Slz and vectors WI, W2 become 

Sll S’ f S” 

SlZ 

=-; 
Wl = w’ *wWN 

2 w2 
(4) 

Now we make the following ansatz in subspace 1 of Fig.2 
for the beam induced transverse electromagnetic field with 
even syrnmetry using a compact matrix notation 

3;) = ~$(~,~){Z+(Z,)A;‘)’ + z-(~u)By)‘} 

C2 x I$)’ = ~~T(~,~)Y,{Z-(z,)131Y)‘-Z+(z,)A(1Y”} 

Z* = exp(FjKl[z, + l/2]) (5) 

where ZO = we have defined 

l the vectorial column matrix 

$5 ‘p) = e’,F,(f, P) + %Fdt, cp) 

with elements 

(6) 

FTE e,s = COS(mp)~Jm(j&it) 

FTY = e,a COS( mp)j,i JA (&GE) 

-FTE = ‘PI* Sifl( mp)jLi JL (jhi[) 

-FTM 
‘9s’ 

= sin(mp)fJm(jmit) 

l the diagonal matrices K1 and Y1 with the modal wave 
numbers and wave admittances respectively 

J nr are 
. ‘I 

.lmi,Jnri 

the Besselfunctions, J:,, their derivatives and Ilere, we will restrict ourself to the evaluation of the lon- 

their zeros. The superscript (T) describes the gitudinal coupling impedance for m = 0. Using the abbre- 

transpose of a matrix. In a similar way we can make an 
ansatz for subspace 2 and 3. Note that in subspace 3 a 
‘I’Ehl-field must be taken into account. After matching 
the field in the planes z, = &w/2 we get the matrices S’, 
S”, and vectors W’, W”. All appearing coupling integrals 

can be solved analytically. For example the coupling ma- 
trix for the transition from subspacc 2 to subspace 1 reads 

Figure 3: lines of force for two segments, koa = 1.76 

with w -+ co. Then, the relation between incoming and 
outgoing waves at port, 1 of segment v + 1 is given by 

B(‘+‘) - R(“+l)Ay+‘) + V(V+‘) 
I - 63) 

where R and V include the influence of the entire structure 
to the right of segment v + 1. Taking into the account the 
v’th segment results in the recurrence formula 

R(“) = s\l;’ + S$;)Q--l R(Y+“$y,’ 

V(“) _. Wf”’ + $;I$-‘(n(“+‘)W$) + V(“+‘)) 

Q = 1 - &‘+“s(y,’ . 
(9) 

Iterating through the whole structure we get finally at the 
interface between segment 1 and 2 the equations 

{ 1 - R(‘)R(2)}Be) = R(1)+9 + $‘) 

A(‘) = R(2)B$l) + Vt2) 
2 

. 
(10) 

The wave amplitudes at all other interfaces can now be 
determined by a forward recurrence using (3). 

Kc? = dw ; Y1TI” = Kcf/lko 

KTy = fii - jki /a2 ; Yi[iM = ko/Kc” IV The coupling impedance 

As an example Fig.3 shows the lines of force for N=2. 

vlatlon 

F(f, cp>. @‘<$, v>edvde (7) 

III Field of the entire structure 

Let us now consider an infinitely long shielding tube with 
N interruptions. This can be simulated by combining N-2 
cells, as shown in Fig.2, and two cells at the end of our tube 

$‘;(z) = -jS(u.b)2~~[E~:!2]i +Tlnf -U$~M 

we get 
(11) 

N-l 

z = -$ c {Fp([Y- l]! - f) - $+‘)([v - 1]1- $) 
v=l 

+ $+“([v - 1]1+ f) - $+“([v - 1]1+ 4) . (12) 

It can easily be shewn that UTEM in (10) is essentially gi- 
ven by the voltage between the inner and outer conductor, 
i.e. 

U” - ejkoz 
TEM - 

J 
’ E$‘de (13) 

b+d 
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where only the TEM field contributes. [~~~‘& describes 
the i’th mode of the longitudinal electric field in subspace 
1 and 2 respectively. 
Fig.4 - Fig.7 show impedances for some configurations. 
Note that the value in Fig.4 for w - 0 is given by 

%[Z(w -+ 0)] = $ In $&j . 

The frequency independent behaviour of the real part of 
the impedance in Fig.4a for d = 0 agrees with the results 
in [a]. 

V Conclusion and outlook 

In the present paper we have proposed an analytical rne- 
thod to calculate the impedance of annular interruptions 
in the inner conductor of a coaxial waveguide. The writ- 
ten computer code is an extension of existing codes. The 
advantage of the method used here is that we can change 
transverse dimensions from cell to cell. So in principle we 
are also able to analyse the so called detuned iris loaded 
waveguide while choosing b + d = u. In this case and if 
n, b are constant for all cells, we obtain exactly the sarne 
results as presented in [3]. 
The generalization to 1101~s with rectangular cross section 
will he presented next. 
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Figure 5: impedance of an annular interruption in the inner 
conductor with d=0.5 ,l.O ,1.5 ,2.0 ,2.5 ,3.0 ,3.5 mm 

k, 1 fiE!iJ ko [km1 

Figure 6: as Figure 5, but with varying gap in the inner 
conductor g=O.l, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0 mm 
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Figure 4: real part of the irnpcdance of a single disconti- 
nuity a) for a charge leaving the inner conductor, b) entc 
ring the inner conductor 
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