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Abstract 

Traditionally the coupling strengths and individual 
cavity resonant frequencies for a chain of coupled os- 
cillators with periodic or biperiodic geometry have 
been calculated from the dispersion relation. A dis- 
persion relation does not exist for a chain of cou- 
pled oscillators with nonperiodic geometry. A numer- 
ical procedure for estimating the unknown coupling 
strengths and resonant frequencies for individual ele- 
ments of coupled oscillator chains has been developed 
and tested. This procedure has the novel capability 
that it is applicable to both periodic and nonperiodic 
structures. 

1 Introduction 

A chain of coupled linear accelerator cavities with 
biperiodic geometry is shown in Figure 1. 
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Figure 2: Coupled oscillator model for a biperiodic 
chain of cavities with nearest neighbor and second 
nearest neighbor coupling 

The coupled equations generated from the model 
above [l] are of the form (aesuming half cell termina- 
tion): 

I + 

(1) 

Figure 1: Model for a biperiodic chain of cavities with 
nearest neighbor and second nearest neighbor cou- 
pling 

Investigation of the electrical properties of such a 
chain is accomplished by formulating a mathemati- 
cal model consisting of a biperiodic chain of coupled 
oscillators (RLC circuits) with nearest neighbor and 
second nearest neighbor coupling[l], as shown in Fig- 
ure 2. 
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The quantities Iz,,, Irn+r are forcing terms, Xan, 
Xrn+r are amplitudes, w,, is the resonant frequency 
for individual accelerating cavities in the absence of 
coupling to their neighbors, w, is the resonant fre- 
quency for individual coupling cavities in the absence 
of coupling to their neighbors, QI is the quality factor 
for accelerating cavities, and Qc is the quality factor 
for coupling cavities. 
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There are 2n+l solutions to the homogenous equa- 
tions (1~~ = 12,,+r = 0) for the lossless case (high Q) 
of the form 

Xan = Ac0s2n#~ (3) 
X2ntl = B cos(2n + l)$, (4 

where 4s = 3, q = 0, 1, . . . . 2N, provided that 
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& is the phase shift per cavity in mode q, and 
WIlQ = 0 , . . . . 2 N are the frequencies of the normal 
modes of oscillation of the cavity chain. Equation 
(5) is the dispersion relation for a biperiodic chain 
of coupled oscillators with nearest and next nearest 
neighbor coupling. 

It is important to note that the dispersion relation 
is not valid for a chain of nonperiodic coupled oscil- 
lators. 

2 Application of the Disper- 
sion Relation to a Side- 
Coupled Cavity Chain 

At FNAL the new LINAC side-coupled cavity sec- 
tions have biperiodic geometry of the form shown 
in Figure 1. Based on the coupled oscillator model 
described in Section 1, the phase shift per cavity, 
4 p, is known for each normal mode frequency. Mea- 
surements are made using an HP network analyzer 
(NWA) of the corresponding normal mode fiequen- 
ties. These values are used to generate a set of points 
(&, wp) in the (4, w)-plane. The coupling strengths 
k,,, kao and k,, and individual cavity resonant fie- 
quencles w,, w, are determined from the dispersion 
curve by least squares fitting equation (5) to the mea- 
sured points (#J ,,, wq) using an internal version of the 
LASL code DISPER[3]. 

3 Matrix 
Representation of the Cou- 
pled Oscillator Equations 

The homogenous form of equations (1,2) for the case 
with no losses is given in vector-matrix format by 
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Equation (6) is equivalent to equations (1,2) with 
I39b = I2n+l = 0 and Q large. 
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Introducing the scale factor 5 , i = a, c, equa- 
tion (6) can be written in vectokmatrix form as 

MX=AX (7) 

where A = (2)‘. The eigenvalue problem (7) has 
2N + 1 solutions corresponding to the set of discrete 
eigenvalues X,, q = 0, . . . . 2N. The corresponding nor- 
mal mode frequencies are given by 

where q = 0, . . . . 2N. 

Consider again the problem of determining the cou- 
pling strengths and individual cavity resonant fre- 
quencies for a LINAC section. An alternative ap 
preach to the application of the dispersion relation is 
described below. 

As before, a HP NWA is used to measure the nor- 
mal mode frequencies, (~~),,,~~,,,,~d, q = 0, . . . . 2N, for 
the LINAC section under test. An initial estimate 
of the coupling strengths and resonant frequencies is 
made in order to initiate an iterative optimization 
algorithm. At each step in the execution of the algo- 
rithm the eigenvalue problem (7) is solved and COI- 

responding normal mode frequencies ws, q = 0, . ..2N 
are calculated. A new step is made by choosing the 
coupling strengths and resonant frequencies to mini- 
mize the sum of the squares of the differences between 
the ws’s and the corresponding measured normal 
mode frequencies (wp)me,,,utcd, q = 0, . . . . 2N. The 
optimization algorithm is implemented as a FOR- 
TRAN program with calls to two subroutines: (i) 
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Table 1: Comparison of results from DISPER and 
Optimization Method for a LINAC side-coupled cav- 
ity section 

EIGEN2, an eigenvalue solver [2], and (ii) DUNLSF, a 
least-squares minimization subroutine from the IMSL 
Mathematics Library. The minimization is carried 
out until the magnitude of the difference between two 
successive steps is less than a user specified tolerance. 

The accuracy of the coupling strengths and nor- 
mal mode frequencies determined by this approach, 
as compared to those determined by the traditional 
method using DISPER, is directly related to the level 
of precision obtained measuring the normal mode fre- 
quencies, (Wq)mcorurede 

Consider a typical LINAC side-coupled cavity sec- 
tion a6 shown in Figure 1. The coupling strengths and 
individual cavity resonant frequenciecl for the section 
were determined from DISPER. 

In order to set up a baseline test to deter- 
mine the accuracy of the proposed procedure, M- 
sume the coupling strengths and individual cav- 
ity resonant frequencies are unknown. The nor- 
mal mode frequencies for the section are available 
from NWA measurements. For the initial estimate 
k;,/2 = 0.05, kz,,/2 = -0.005,kzC/2 = O.OOO1,w,o = 
805MHz,wz = 805MHz, and &,d = 805MHz, 
application of the optimieation procedure outlined 
above yields the results shown in Table 1. Conver- 
gence required thirteen iterations. Further tests indi- 
cated that varying the initial estimate did not signif- 
icantly effect either the results or the rate of conver- 
gence. 

4 Extension of the Optimiza- 
tion Method to Nonperiodic 
Structures 

A prototype LINAC side-coupled cavity module, con- 
sisting of two sections joined by bridge side cavities 
(bsc) and a bridge coupling cavity (bee), is not a 

ko,bccl2 -1.1082194 1O-2 
k , bee brc/2 3.5754545 lo-a 

Wbrc 798.79952 MHz 

Wbce 809.58395 MHz 

Table 2: Coupling strengths and resonant frequencies 
for a LINAC side-coupled cavity module 

biperiodic structure, and therefore the dispersion re- 
lation (5) is not valid. However, the optimization 
method described in Section 3 is applicable. 

A vector-matrix representation of the coupled os- 
cillator equations modeling the prototype LINAC 
module can be developed analogous to the proce- 
dure followed in Section 3. The parameters kt,, kf,,, 
and kzc and wi,, w$ are known for each of the 
two individual LINAC sections, i=1,2. The values 
of k,,,&, kbec,brer Wb#c and Wbcc are unknown, while 
kbrc,bre is assumed to equal zero. 

The numerical optimization procedure described in 
Section 3 was applied to determine k,,bCc, kbcc,bre, WbaC 
and Wbce for such a nonperiodic structure. Conver- 
gence required ten iterations. The results are shown 
in Table 2. 

6 Conclusions 

A numerical procedure for estimating unknown cou- 
pling strengths and resonant frequencies for individ- 
ual elements of coupled oscillator chains ha6 been pre- 
sented. The procedure ha6 the novel capability that it 
is applicable to both periodic and nonperiodic struc- 
tures. 
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