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Abstract

We present a new algorithm well suited for the modal analysis
of arbitrarily shaped cavities filled with a lossless, isotropic and
homogeneous medium. The electric-wall condition is enforced on
the field produced by an unknown current sheet, distributed over
the cavity wall, and the resulting Electric Field Integral Equation
(EFIE) is solved using the method of the moments (MM).
Thanks to the special form of the kernel of the EFIE, the alge-
braic problem can be rearranged to yield the resonating frequen-
cies and the associated currents as eigenvalues and eigenvectors
of a standard linear eigenvalue problem. The algorithm yiclds all
resonances up to the maximum frequency of interest by a single
evaluation of the MM matrices. For this reason CPU times are
reasonably short, even in finding many resonances of quite com-
plicated cavities. The cavity shape is modelled using triangular
patches and the code is interfaced with a commercial mechanical
CAD.

1. INTRODUCTION

The availability of accurate and efficient computer codes to de-
termine the resonances of arbitrarily shaped cavities is of great
importance in the design of interaction structures for particle ac-
celerators. Commercial codes for 3-D structures (MAFIA,
ARGUS, ectc.) are usually based on Finite Element or Finite
Difference methods, which make them very flexible. They need,
however, a 3-D mesh and, consequently, a very large number of
variables to discretize the problem, thus requir-
ing a large memory allocation and long com-
puting times. When the medium inside the
cavity is homogeneous, as in the case of accel-
erating structures operating in vacuum, it may
be advantageous to use a Boundary Integral
Method (BIM), that involves quantities defined
only on the cavity wall. In this case, indeed, a
surface mesh is sufficient, and the order of the
matrices involved in the problem reduces dra-
matically. The conventional approach consists
in enforcing the electric-wall condition on the
electric field (or on the magnetic field) pro-
duced inside the cavity volume V by an un-
known current sheet J distributed on its
boundary S and radiating in free space at an unknown frequency
. The resulting Electric Field Integral Equation (EFIE) or
Magnetic Field Integral Equation (MFIE) is transfonmed into a
complex matrix problem using the method of the moments; the
resonating frequencics oy are obtained as those particular values
of @ that permit the problem to have a non-trivial solution.
This solution yields the modal current distribution J;, from
which the modal fields can be calculated. In both cases the coeffi-
cients of the MM matrix depend on the frequency through com-
plex transcendental functions, and each resonance must be found
through an iterative procedure that require the repeated evaluation
of the MM matrix at closcly spaced frequencies [1,2]: this may
lead to overlong computing times when many resonances arc 1o
be found, a drawback that may overwhelm the intrinsic advantage

Fig. 1

of using the BIM.

To overcome this drawback we follow a somewhat different
approach, that constitutes the 3-D extension of an algorithm de-
veloped for the modal analysis of arbitrarily shaped waveguides
[3]. We consider the unknown current J radiating, rather than in
free space, inside a spherical volume  including V and bounded
by an clectric wall (see Fig. 1). This is possible because, when J
corresponds to one of the Jp, the field outside V is zero, and
therefore it does no matter what boundary condition we impose
on the exterior field. As shown in [4], the electric field inside Q
duc to the current sheet J can be expressed as the sum of two
quasi-static contributions plus a high frequency correction:
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wlere k:m@, n=V e, o is the surface charge density (related
to J by the continuity condition) and g(r,r"), G(r,r'), e,(r’) are
real frequency independent functions, known in closed form [4].
In particular, g(r.r') is the electrostatic potential Green's function
of the spherical cavity and e, (r"), k,, are the
electric (normalized) electric field vector and the
wall corresponding wavenumber of the m-th mode
of the spherical resonator. The summation in-
cludes all the modes having k, < kyr, and it
is an accurate approximation of an infinite
series, up to a frequency corresponding to
about kyy/2.

Though more complicated than the equiva-
lent expression for a current radiating in free-
space, eq. (1) is much more convenient for the
numerical solution of the EFIE, since it is a
rational function of k. In fact, thank to this
feature the discretization of the EFIE results
into a linear matrix eigenvalue problem, as we
are going to show in the following,.

2. THE ALGORITHM

The surface S is discretized using triangular patches and the
unknown functions J(r) and o(r) are expanded as:

N
J(r) = 2 ajfiry ;1 o) =- L Z a; Vg fi(r) )
i=1 JO oy

where {fj(r)} are the vector subsectional base functions intro-
duced in [5]. Each fi(r) has a support Z; constituted by the two
triangles sharing the 1-th edge (see Fig. 2) and is represented by:
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(l-l/?.A’;) p+i if r belongs to Tt
~G2AT) 9]

0 elsewhere

fi(r) = if r belongs to T; 3

where 1 is the length of the i-th edge, At and Aj denote the area
of the two adjacent triangles TT and Tf, and pt and pj are vectors
emerging from the two vertexes opposite to the i-th edge. The
number N of the base function equals the number of the edges.
Using these base functions, J(r) and o(r) are represented by well-
behaved functions: in fact, as discussed in [5], the component of
the current normal to any edge is continuos, a fact that prevents
the need of considering line charges. Morcover, the surface
charge density is represented by a zero mean, piecce-wise constant
function, since we have:

1,/AY  ifr belongs to T?
V- fir) = y= i/A] if r belongs to T; 4)
0 elsewhere

Intreducing eq. (2) into (1), enforcing the boundary condition
n x E(r) = 0 (r e S) and solving the resulting EFIE by the MM
by using {n x f;(r)} as test functions, the following set of equa-
tions is obtained:

'-152 Cij +Z, Ly a4 +z Riy by =0 i=l,...

: |'n_.

N

In deriving (5) the set of the M auxiliary variables {b} have
been introduced, which are related to {a;} by the following set of
equations:

2.2 N
b ———k—“‘ z R; . a; m=1,...M (6)
A S =
The other quantities in (5) are defined as:
C1J = J‘f V- fi(r) g(r,r) Vg fj(r') ) dS'dS (Ta)
%i %
Ljj= JJ fi(r) - G(r,r) - fj(r') dS'dS (7b)
5T
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'm Zl
Note that C;; and Lij = Lji due to the reciprocity propertics
o gand G [

Introducing the vectora a=(a;}, a=(b,, ) and the matrices C, L,
Rand D= dmg[km} the two sets of equations (§) and (6) can
be grouped as follows:

D R by 11 1
R L a k2

0 b
O C a
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where ~ denotes the transpose and I and O are the identity and the
zero matrices. Note that all the coefficients of the matrices are
independent of the frequency, so that (8) constitutes a gencralized
linear matrix eigenvalue system in standard form. Morcover, the
system matrices are real and symmetric. The largest eigenvalues
of (8) yicld the first resonating frequencies: they can be found us-
ing very efficient library routines.
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Compared to the standard EFIE approach [2], a longer time is
needed to calculate the MM matrices, due to the more compli-
cated expressions of their coefficients; moreover, besides the de-
sired resonances, this algorithm yields also the resonances of the
exterior region Q-V, i.e. of the fictitious resonator bounded by
the spherical surface and the surface S (these spurious solution
are casily detected and rejected, since they give rise to a zero field
inside the volume V). In spite of these drawbacks, the computer
code that implements the new algorithm is very efficient when
many resonances are to be calculated. We found that, in the case
of typical cavities, the time for computing all resonances up to
twice the frequency of the fundamental mode is shorter than that
needed to find only one resonance following the standard EFIE
approach (note that, in the conventional approach, typically
more than 10 evaluations of the matrices are needed to localize a
resonance). Moreover, no problems arise in case of degenerate or
nearly degenerate modes.

3. THE COMPUTER CODE

The algorithm has been implemented in a computer code running
under VAX-VMS. The program reads the geometry of the cavity
from a formatted file: an interface to a commercial mechanical
CAD (PATRAN) is available, that eases the definition of the
geometry and the generation of a suitable mesh. It is possible to
take advantage of symmetries respect to the coordinate planes to
reduce the dimension of the problem. Then coefficients (7) are
calculated: since functions g(r,r') and G(r,r') diverges whenr —
r', coefficients ¢;; and l;; are evaluated analytically in cases
where X; and Zj overlap (partially or totally). In all other cases a
fast gaussian quadrature scheme is used. Problem (8) is solved
using the EISPACK routines [6], after a rearrangement, not re-
ported for brevity, useful to reduce memory allocation by taking
advantage of the special form of the matrices involved. At pre-
sent, the selection of the resonances of the outer region must be
performed manually, but an automatic procedure for detecting and
purging these spurious solution is being implemented. The
eigenvalucs and the corresponding eigenvectors are stored in a
file: a post-processing program can use these data to calculate the
normalized modal fields and to evaluate Q-factors and shunt-
impedances.

Many calculations have been performed on trirectangular,
spherical and cylindrical cavities, and the numerical results have
been checked against theoretical ones, in order to validate the
program and to investigate the influence of different mesh sizes.
Tab. I summarizes the results for a cylindrical cavity (radius=24
cm, heigth=22 cm) analyzed up to about three times the fre-
quency of its fundamental mode using two different mesh size
(see Fig. 3a.b). The symmetry respect to the three coordinate
planes were exploited and, to minimize the error arising from the
discretization of the surface, the volume of the analyzed struc-
wres was kept equal to that of the original cavity in both cases.
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Using the finest mesh, consisting of 54 triangles {over which 89
base functions were defined), the accuracy is very good for all
modes. Even with the coarse mesh (15 triangles, 27 base func-
tions) the accuracy is reasonable for the first few modes, whereas
only a rough estimate of the resonating frequency is obtained for
the higher modes, as expected. The same table reports, for each
mode, the ratio Liy/Ar of the mean length of the edges to the
free-space resonating wavelength. It is noted that accuracies bet-
ter than 0.3% are obtained for Ly, < Ap/4. This result, confirmed
by the other tests, suggests a rule of thumb for choosing the
mesh size. CPU times (on a VAXStation 4000/60) are about 20
s (coarse mesh) and 240 s (fine mesh) for finding all the modes
belonging to each class of symmetry. When dealing with sym-
metries, some intermediate results, not depending on the particu-
lar class of symmetry, can be stored and reused for finding modes
with different symmetries. This possibility, not yet imple-
mented, will greatly reduce CPU times for the complete analy-
sis.

A second test example refers to the axisymmetric cavity of
Fig. 4. One eighth of the surface is modelled using 136 patches
(corresponding to 219 base functions). CPU times were 26 min-
utes for each symmetry class to find the 34 modes up to 10
GHz. In Tab. II the resonating frequencies of the first 20 modes
(classified according to their even or odd symmetry respect to the

coordinate p‘gunpc\ are r\nnqurnr‘ with measured values :u\d’ when

possible, with the results obtained by the program SUPER-
FISH. Fig. 4 shows the electric field of the dominant mode.
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Symmetry | Calc. res. | Superfish Measured
Xy Z freq. [GHz]
eeo 2.8642 2.8429 2.8467
eee 3.9191 3.8976 3.8950
eoe 3.9547 -- 3.9357
cee 5.0429 -- 5.0171
€00 5.0927 -- 5.0544
ooe 6.0471 -- 6.0208
eoe 6.1687 -- 6.1238
eoe 6.3336 - 6.2938
eeo 6.4608 6.4378 6.4150
200 6.5880 -- 6.5453
eco 6.9123 -- 6.8627
eco 7.1340 7.0876 7.0874
eeo 7.2389 -- 7.1933
eee 7.5324 7.4741 7.4820
ooe 7.6879 - 7.6327
ece 7.7238 -- 7.6645
eoe 7.7759 - 7.7292
e0o 8.1312 -- 8.0604
000 8.1327 -- 8.1016
200 8.3276 8.2787

TAB. II - Resonating frequencxes of the
nose-cone cavity of Fig. 4
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