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Abstract 

We present a new algorithm well suited for the tnoclnl analysis 
of arbitrarily shaped cavities filled with a lossless, isotropic and 
homogeneous medium. The electric-wall condition is cnforccd on 
the field produced by ‘an unknown current sheet, distributed over 
the cavity wall, and the resulting Electric Field Integral Equation 
(EFIE) is solved using the method of the moments (MM). 
Thanks to the special form of the kernel of the EFIE, the nlge- 
braic problem can be rearranged to yield the resonating frcquen- 
ties and the associated currents as cigenvalucs and eigenvectors 
of a standard linear eigenvalue problem. The algorithm yields all 
rcsomulces up to the maximum frequency of interest by a single 
evaluation of the MM matrices. For this rcnson CPU times are 
reasonably short, even in finding many resonances of quite com- 
plicated cavities. The cavity shape is modelled using triangular 
patches and the code is interfaced with a commercial mechanical 
CAD. 

I. INTRODUCTION 

The availability of accurate and efficient computer codes to de- 
tcrmine the resonances of arbitrrily shaped cavities is of great 
importnncc in the design of interaction structures for particle ac- 
celerators. Commercial codes for 3-D structures (MAFIA, 
ARGUS, etc.) are usually based on Finite Elcmcnt or Finite 
Difference methods, which make them very flexible. They need, 
however, a 3-D mesh and, conscqucntly, a very lnrge number of 
variables to discretize the problem, thus requir- . ._ 

of using the RIM. 
To overcome this drawback we follow a somewhat different 

approach. that constitutes the 3-D extension of an algorithm de- 
veloped for the modal analysis of arbitrarily shaped waveguides 
[3]. We consider the unknown current J radiating, rather than in 
free space. inside a spherical volume Q including V and bounded 
by an clcctric wall (see Fig. I). This is possible because, when J 
corresponds to one of the Jr, the field outside V is zero, and 
therefore it does no matter what boundwy condition we impose 
on the exterior field. As shown in [4], the electric field inside R 
due to the current sheet J can be expressed as the sum of two 
quasi-static contributions plus a high frequency correction: 

IS(r) = - V g(r,r’) ‘+ dS’ - jqk 
J’ 

G(r,r’) J(r’) dS’ - 

S’ S’ 
M 

- jvk3 c 
e,,(r) 

s m=l kt(k,i-k2) s, 
e,,(r’). J(r’) dS’ (1) 

whcrc k=o d- EP, rl=G (T is the surface charge density (related 
to J by the continuity condition) and g(r,r’), G(r,r’), e,,(P) are 
real frequency indcpcntlent functions, known in closed form [4]. 
In particular, g(r,r’) is the electrostatic potential Green’s function 

mg a large memory allocation and long com- 
puting times. When the medium inside the 
cavity is homogeneous, as in the case of acccl- 
crating structures operating in vacuum, it may 
bc advantageous to use a Boundary Integral 
Method (RIM), that involves qu‘antities defined 
only on the cavity wall. In this case, indeed, a 
surface mesh is sufficient, nnd the order of the 
matrices involved in the problem reduces drn- 
maticnlly. The convcntionnl approach consists 
in enforcing the electric-wall condition on the 
electric field (or on the magnetic field) pro- 
duced inside the cavity volume V bv an un- 
known current sheet J distribute4 on its 

Fig. 1 

boundary S and radiating in free space at an unknown frcqucncy 
O. The resulting Electric Field Intcgrnl Equation (EFIE) or 
Magnetic Field Integral Equation (MFIE) is transformed into a 
complex matrix problem using the method of the moments: the 
resonating frequencies Wr are obtained as those pnrticuku values 
of o that permit the problem to have a non-trivial solution. 
This solution yields the modal currcnl distribution Jr. from 
which the modal fields c&an be calculntcd. In both cases the coeffi- 
cients of the MM matrix depend on the frequency through CDIW 
plex transcendental functions. and each resonance must be found 
through an iterative procedure that require the rcpenrcd evaluation 
of the MM matrix at closely spaced frcqucncies [I ,2]: this my 
lead to overlong computing times when many resonances arc to 
be found. a drawback that may ovcrwhclm the intrinsic advantage 

of the spherical cavity and e,,(r’), k,, are the 
(normalized) electric field vector and the 
corresponding wavenumber of the m-th mode 
of the spherical resonator. The summation in- 
cludes all the modes having k,, 2 kM, and it 
is an accurate approximation of an infinite 
series, up to a frequency corresponding to 
about k&2. 

Though more complicated than the equiva- 
lent expression for a current radiating in free- 
space, cq. (1) is much more convenient for the 
numerical solution of the EFIE, since it is a 
rational function of k. III fact, th‘ank to this 
feature the discretization of the EFIE results 

(*) Work partinlly sul)ported by C.N.R. under Conlract No. 1)2.028!57.CT07. 

into a linear matrix eigenvalue problem, as WC 
arc going to show in the following. 

2. THE ALGORITHM 
The surface S is discretized using triangular patches and the 

unknown functions *J(r) and cr(r) are exp‘anded as: 

N N 

J(r) = C aI fi(r) ; 0(r) = -;-1- c 
Jo i=l 

ili Vs. fi(r) (2) 
i=l 

where (fi(I’) ] arc the vector subsectional base functions intro- 
duced in (51. Each fi(r) has a support Ci constituted by the two 
triangles sharing the i-th c&c (see Fig. 2) and is represented by: 
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1 (li/ZA:) p+ if r belongs to T+ 

fi(r) = - (li/2AT) pi if r belongs to Tf (3) 

0 elsewhere 
where li is the length of the i-th edge, A: ‘and Ai denote the area 
of the two adjacent trinngles T: and T;, ‘and pl and pi are vectors 
emerging from the two vertexes opposite to the i-th edge. The 
number N of the base function equals the number of the edges. 
Using these base functions, J(r) ‘and G(r) ‘are represented by wcll- 
behaved functions: in fact, as discussed in IS], the component of 
the current normal to any edge is continues, a fact that prevents 
the need of considering line charges. Moreover, the surface 
charge density is represented by a zero mean, piece-wise constant 
function, since we have: 

1 

Ii/A: if r belongs to T 

V, ’ fi(r) = - Ii/A; if r belongs to Tj (4) 

0 elsewhere 

Introducing eq. (2) into (l), enforcing the bound;uy condition 
n x E(r) = 0 (r E S) and solving the resulting EFIE by the MM 
by using (n x fi(r)) as test functions, the following set of equa- 
tions is obtained: 

N N M 
1 

-3 c Cij “j + c Lij “j + c Ri,n b,,, = 0 i=l,..., N (5) 
k j=l j=l m=l 

In deriving (5) the set of the M auxiliary variables { !,n] have 
been introduced, which are related to ( ;Ii} by the following set of 
equations: 

k*k* N 

b In 
In = c 

k,i - k2 j=l 
Rjm aj m=l ,...,M (6) 

The other quantities in (5) are defined as: 

Cij = 
ss 

V, fi(r) g(r,r’) V$. fj(r’) ) dS’dS 

Zi Ej 

Lij = 
SI 

fi(r) G(r,r’) fj(r’) dS’dS 

Ci Ej 

(7a) 

Vb) 

Rim = 4 r fi(r) e,,,(r) dS (7c) 

Note that Ci. = Cji nnd Lij = Lji due to the reciprocity propcnies 
ofg<andG&]. 

Introducing the vectors a=( ai), a=( b,,) and the matrices C, L. 
R and D = ding1 k;:}, the two sets of equations (5) and (6) can 
be grouped as follows: 

where - denotes the tr‘anspose ‘and I ‘and 0 are the identity ,antl the 
zero matrices. Note that all the coefficients of the matrices are 
independent of the frequency, so that (8) constitutes a gcncrnlizcd 
linear matrix eigcnvalue system in standard form. Moreover, the 
system matrices are real and symmetric. The largest cigenvnlucs 
of (8) yield the first resonating frequencies: they can bc found us- 
ing very efficient library routines. 
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Compared to the standard EFIE approach [2], a longer time is 
needed to calculate the MM matrices, due to the more compli- 
cated expressions of their coefficients: moreover, besides the de- 
sired resonances, this algorithm yields also the reson‘ances of the 
exterior region R-V, i.e. of the fictitious resonator bounded by 
the spherical surface and the surface S (these spurious solution 
‘are easily dctccted and rejected, since they give rise to a zero field 
inside the volume V). In spite of these drawbacks, the computer 
code that implements the IICW algorithm is very efficient when 
many resonnnces ‘are to bc calculated. We found that, in the case 
of typical cavities, the time for computing all resonances up to 
twice the frequency of the fundamental mode is shorter than that 
needed to find orl/y tree resonance following the st‘andnrd EFIE 
approach (note that, in the conventional approach, typically 
more th,an 10 evaluations of the matrices are needed to localize a 
resonance). Moreover, no problems arise in case of degenerate or 
ne:uly dcgcncmte modes. 

3. THE COMPUTER CODE 
The algorithm has been implemented in a computer code running 
under VAX-VMS. The program reads the geometry of the cavity 
from a formatted file: ‘an interface to a commercial mechnnical 
CAD (PATRAN) is available, that eases the definition of the 
geometry and the generation of a suitable mesh. It is possible to 
tnke adv,uitagc of symmetries respect to the coordinate planes to 
reduce the dimension of the problem. Then coefficients (7) are 
calculated: since ftmctions g(r,r’) and G(r,r’) diverges when r -+ 
r’, coefficients Cij and lij are evaluated analytically in cues 
where Ci and ~j overlap (p‘artially or totally). In all other cases a 
fast gaussian quadrature scheme is used. Problem (8) is solved 
using the EISPACK routines [6], after a rearrangement, not re- 
ported for brevity, useful to reduce memory allocation by taking 
advwtage of the special form of the matrices involved. At pre- 
sent, the selection of the resonances of the outer region must be 
pcrformcd manually, but an automatic procedure for detecting and 
purging these spurious solution is being implemented. The 
eigcnvalucs ‘and the corresponding eigenvectors are stored in a 
file: a post-processing program can use these data to calculate the 
normalized 1notln1 fields ‘and to evaluate Q-factors and shunt- 
impcd:u~ces. 

Many calculations have been performed on trirectangulnr, 
spherical and cylindrical cavities, ,and the numerical results have 
been checked against theoretical ones, in order to validate the 
program and to investigate the influence of different mesh sizes. 
Tab. I summarizes the results for a cylindrical cavity (radius=24 
cm, heigth=32 cm) analyzed up to about three times the fre- 
quency of its fundamental mode using two different mesh size 
(see Fig. 3n.b). The symmetry respect to the three coordinate 
plants were exploited and, to minimize the error ‘arising from the 
discretization of the surface, the volume of the analyzed struc- 
tures was kept equal to that of the original cavity in both cases. 
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Using the finest mesh, consisting of 54 triangles (over which 89 
base functions were defined), the accuracy is very good for all 
modes. Even with the coarse mesh (IS triangles, 27 base func- 
tions) the accuracy is reasonable for the first few modes, whereas 
only a rough estimate of the resonating frequency is obtained for 
the higher modes, as expected. The same table reports, for each 
mode, the ratio Lm/hr of the mean length of the edges to the 
free-space resonating wavelength. It is noted that accuracies bet- 
ter than 0.3% are obtained for L,, < hr/4. This result. confirmed 
by the other tests, suggests a rule of thumb for choosing the 
mesh size. CPU times (on a VAXStntion 4000/60) are about 20 
s (coarse mesh) and 240 s (fine mesh) for finding all the modes 
belonging to each class of symmetry. When dealing with sym- 
metries, some intermediate results, not depending on the pnrticu- 
lar class of symmetry, can be stored and reused for finding modes 
with different symmetries. This possibility, not yet imple- 
mented, will greatly reduce CPU times for the complete annly- 
sis. 

A second test example refers to the axisymmctric cavity of 
Fig. 4. One eighth of the surface is modclled using 136 patches 
(corresponding to 219 base functions). CPU times wcrc 26 min- 
utcs for each symmetry class to find the 34 modes up to 10 
GHz. In Tab. II the resonating frequencies of the first 20 modes 
(classified according to their even or odd symmetry respect to the 
coordinate planes) are compared with measured values and, when 
possible, with the results obtained by the program SUPER- 
FISH. Fig. 4 shows the electric field of the dominrult mode. 
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Symmetry Calc. res. 
xy2 freq. [GHz] 
eeo 2.X642 
eee 3.9191 
eoe 3.9547 
eee 5.0429 
eoo 5.0927 
ooe 6.047 1 
eoe 6.1687 
eoe 6.3336 
eeo 6.4608 
eoo 6.5880 
eeo 6.9123 
eeo 7.1340 
eeo 7.23X9 
eee 7.5324 
ooe 7.6879 
ccc 7.7238 
eoe 7.7759 
eoo 8.1312 
000 8.1327 
eoo 8.3276 
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Superfish 

2.8429 
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__ 
-_ 
_- 
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7.4741 
-- 
__ 
-- 
-- 
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:quencies 0 ft 
TAB. I - Resonating frequencies of the cylindrical cavity of Fig. 3 nose-cone cavity of Fig. 4 

Measured 

2.8467 
3.8950 
3.9357 
5.0171 
5.0544 
6.0208 
6.1238 
6.2938 
6.4150 
6.5453 
6.8627 
7.0874 
7.1933 
7.4820 
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7.6645 
7.7292 
8.0604 
8.1016 
X.2787 
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