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Abstract 

Longitudinal space-charge waves develop on a heavy- 
ion inertial-fusion pulse from initial mismatches or from in- 
appropriately timed or shaped accelerating voltages. With- 
out correction, waves moving backward along the beamcan 
grow due to the interaction with their resistively retarded 
image fields, eventually degrading the longitudinal emit- 
tance. A simple correction algorithm is presented here 
that uses a time-dependent axial electric field to reverse 
the direction of backward-moving waves. The image fields 
then damp these forward-moving waves. The method is 
demonstrated by fluid simulations of an idealized inertial- 
fusion driver, and practical problems in implementing the 
algorithm are discussed. 

I. Introduction 

Axial confinement of the high-current beams needed for 
heavy-ion fusion (HIF) must be provided by the accelerat- 
ing waveforms. The longitudinal electric field required for 
this confinement ideally is proportional to the axial deriva- 
tive of the beam line-charge density in the beam frame, and 
if it could be applied continually, it would have no effect 
except to balance the axial space-charge force of the beam. 
However, these so-called “ear” fields can only be applied 
periodically in induction accelerators, at an amplitude that 
gives the correct average force. Moreover, the high cost of 
time-dependent pulsers favors the widest allowable spacing 
of these “ear cells.” 

Numerical modeling [1,2] indicates that the periodic ap- 
plication of ear fields initiates low-amplitude space-charge 
waves near the beam ends, even if the fields are applied 
every lattice period. The waves moving toward the beam 
head are shown theoretically to decay, but waves moving 
back from the head grow expouentially due to the “lon- 
gitudinal instability,” which is driven by the interaction 
of a line-charge perturbation with its resistively retarded 
image field. These growing waves can increase the longi- 
tudinal emittance of the beam and thereby frustrate the 
final focus of the beam onto a target Additional sources of 
space-charge waves on ion pulses are the inevitable errors 
in measuring the line-charge density, the imperfect gener- 
ation of ear fields, and the timing errors in applying them. 

In this paper. a simple algorithm is proposed for cor- 
recting errors in either the line-charge profile or average 
longitudinal velocity of a HIF pulse. The method is briefly 
described in the next section, and it is demonstrated using 
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a one-dimensional fluid code in Section III. Some warnings 
about the limited applicability of the method are men- 
tioned in a final section. 

II. Model 

A. Basic Equations 

Beam longitudinal dynamics is modeled here by treat- 
ing slices of the beam as Lagrangian fluid elements. This 
approach is acceptable for studying longitudinal perturba- 
tions because of the long time scales involved and because 
there are no significant single-particle effects. In adopting 
a cold-fluid model, we implicitly assume that the beam has 
a negligible longitudinal temperature and that the slices 
remain approximately collinear. An approximate equation 
for the longitudinal velocity v is obtained by retaining only 
the electrostatic force in the single-particle motion equa- 
tions and averaging the axial component over the beam 
cross-section. For a beam with a line-charge density A, an 
ion mass M, and charge state Q transported in a straight 
lattice, we obtain 

dv qe ax 
dt=JG 

Et,, - g- - a2 r$v 
> (1) 

Here, Eezl is the radially averaged axial component of the 
external electric field, and the following term accounts for 
the radially averaged longitudinal space-charge field of the 
beam, with the coupling factor g being given by 

---In R” I 
g = 4TQ ( > PO 

for a beam-pipe radius Rand a matched beam radius of ~0. 
In deriving this space-charge field, the radial electrostatic 
field is assumed to vary over a much shorter scale length 
than X, and we have used the fact that the charge density 
of an equilibrium beam is approximately constant except 
near the ends. The final term on the right side of Eq. (I) 
models the electric field that results when the image cur- 
rent in the accelerator wall is retarded due to an average 
resistance per unit length 71 [3]. In this simple description, 
the beam transverse dynamic.s only enter through the log- 
arithmic coupling factor 9. We treat this factor as a con- 
stant here to obtain a one-dimensional description. This 
choice is equivalent to assuming a matched beam with uni- 
form axisymmetric focusing. An independent equation for 
X is obtained by averaging the continuity equation over the 
beam cross section: 

ax a(h) at+a=O. 2 (3) 
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To obtain t,ractable equations, we assume that the m- 
perturbed beam has a constant and uniform line-charge 
density X0 and fluid velocity ~0. If we then change vari- 
ables to the bean-frame distance ( z z - vat and assume 
perturbations of the form v = vg + i; and X = X0 +x, then 
we obtain a pair of linearized equation for V and x: 

- g$ - l?(~oc + v&i) (4b) 1 
Here, we have included an unspecified cove&on field Eest 
that depends on the correction algorithm. 

B. Dynamtcs of Uncorrected Perturbations 

For a perfectly conducting accelerator with no correc- 
tion field, the perturbed equations of Eq. (4) reduce to a 
homogeneous wave equation for 6 or i. The general solu- 
tion can be written in the form 

i(C> t) = F+(C + Q) + F-.(< - upt) (5Q) 

:(C, t) = ++(C + +) + $F-(C - q,t), (5b) 

where the wave phase velocity vP = (qegXo/M)‘/’ is typ- 
ically small compared with vO. This solution describes a 
slow wave moving backward at zip in the beam frame and 
a fast wave moving forward at up. The two simplest exam- 
ples are a pure velocity perturbation, which initially has 
F+(C) = -F-(c), and a pure density perturbation with 
F+(C) = F-(c). In the examples shown in this paper, a 
pure parabolic velocity perturbation is always used, but 
equivalent results are obtained with a density perturba- 
tion. 

A non-zero resistance has been shown to cause hunching 
of backward waves and damping the forward waves [B]. If 
we assume that perturbations depend on C and t according 
to exp(it(’ - iwt), then the resulting dispersion relation 
shows for small vy/vg that backward waves grow with a 
growth rate r = 7)vov,/2g, while forward waves damp with 
a decay rate -r. This “longitudinal instability” can be 
seen in the numerical solution of the perturbed equations of 
Eq. (4) shown in Fig. 1. For this illustration, parameters 
resembling those of a HIF driver have been used, with an 
ion mass M of 200 amu, a charge state 4 of unity, an ion 
kmetic energy of 10 (:e\‘, and a beam current Xavo of 3 
kA The coupling factor CJ has been taken to be 1.4 x 10’0 
m/F, and a resistance 4 = 150 0/m has been used. For 
these parameters, the initial perturbation is rxpectpd to 
grow by a factor of about 5.8 during the 8 ps durat,ion of 
the simulation, and the calculated value is in almost exact 
agreement,. The forward wave is sun in the figure to damp 
by a similar factor. 

C. Correctzon Algorithm 

Thr strategy adopted hrrr for correcting longitudinal 
perturbations is to apply a sullable axial electric field !?,,t 
to reverse any backward waves, relying on the accelerator 

Fig. 1 Uncorrected evolution of a parabolic velocity per- 
turbation in an accelerator with q = 150 Q/m re- 
sistance. 

resistance to subsequently damp them. The required ve- 
locity change is calculated by noting the relation between 
line-charge density and velocity for a forward going wave: 

q<, t) = FCC - %4 (‘50) 

G(C, t) = zF(C - +t). (6b) 

To correct perturbatiops at some time t,, we then take 
fleri$ ;I = F(C) = hld(CI tc) and change ,the velocity 

,,,(C,O) = (u,/Xo)F(<). The reqmred velocity 
change is then 

AC(C) = +,(i, te) - %ld(C, k). (7) 

From Eq. (6): this velocity change is seen to vanish for 
purely forward-going waves, and it equals 2(?ip/&)&ld for 
purely backward perturbations. 

As written, this velocity change requires an electric field 
to be applied simultaneously to the full length of the beam. 
Such application is difficult because t,he accelerating field in 
induction accelerators is confined to relatively short gaps. 
Instead, WC use the fact that vP/vo is normally small to 
replace thr c-dependent field at t, with a time-dependent 
field in a gap of length L, located at the beam-head posi- 
tion at 1,.. The required electric field is then 

L*(t) = 5 AV[C = v”(t - f<)]. (9 i 

III. Results 

When the correction field from Eq. (8) is applied to 
an idealized perturbation in the ahsenrc of resistance, t.hf, 
method works as expected Since the correction field 1s 
zero when the forward wave is traversing the gap, that 
portion of the wave is unaffcct,ed, but the backward wave 
is seen to change direction <as the velocity perturbation 
changes sign The final stat.? IS a pair of undamped pertur- 
bations moving forward in thr beam frame at. vP. If an ac- 
celerator resistance of 150 R/~rl is included, the correction 
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Fig. 2 Evolution of a parabolic velocity perturbation 
in an accelerator with n = 150 Q/m making a 
single correction. 

Fig. 3 Evolution of a parabolic velocity perturbation 
in an accelerator with 0 = 150 Q/m making 
three corrections. 

method works imperfectly, as seen in Fig. 2. Although the 
backward wave is substantially reversed, a small backward 
component remains and is the dominant perturbation by 
the end of the run. Reversal of the backward wave is in- 
complete in this case because the wave-equation solution 
Eq. (5), from which the correction field of Eq. (8) is ob- 
tained, is only exact in the absence of resistance. 

Regrowth of backward waves can be controlled by pe- 
riodically applying corrections with the form of Eq. (8). 
Fig. 3 shows the same initial velocity perturbation cor- 
rected at three locations about 170 m apart. At the end of 
the simulation there is no visible backward wave, although 
there has not been sufficient time after the last correction 
for significant regrowth. The main conclusion from this 
case is that periodic correction can control but probably 
not eliminate backward waves. 

IV. Discussion 

It should be stressed that the numerical results here are 
t,he best that. might be obtained using the proposed correc- 
tion algoril.hm. Perfect. measurement of the perturbations 

was assumed, and the exact correction &Id was applied. 
In fact, measuring fi independently from A is difficult with 
currently available diagnostic techniques. Current loops 
can measure fb = Xv with an accuracy of about fl% for 
the currents levels expected near the end of a HIF driver, 
and methods for obtaining the line-charge density X, such 
as capacitive probes, are less accurate. Consequently, any 
scheme for combining these measurements to obtain the 
relative velocity error c/no will have an error greater than 
0.01, whereas final focus requirements limit V/Q to less 
that 0.005. Probably some as yet unproven method like 
laser “tagging” of ions is needed to measure 6 directly. 
Generating the required correction field ,r?.eat is also chal- 
lenging because of the magnitude and complicated time 
dependence of the correction signal. If we assume that the 
1% uncertainty in lb represents the smallest measurable 
perturbation, then the minimumcorrection signal from Eq. 
(8) for a gap length L, of 3 cm is about 5 x lo7 V/m. To 
avoid electrical breakdown, this voltage may have to be 
applied piecemeal in several successive cells. 

The proposed correction algorithm effectively reduces 
the level of space-charge waves on a beam provided that the 
growth rate F is sufficiently high. When backward waves 
are repeatedly reversed with an interval 6t between correc- 
tions, the peak amplitude of space-charge waves is reduced 
by about exp[F(61- Lb/t+,)] compared with an uncorrected 
beam, where La is the beam length. For a growth length 
up/F equal to Lb, this reduction factor is at most about 
0.37, making the utility of the correction scheme ques- 
tionable. Furthermore, since incompletely damped per- 
turbations reflect coherently at the beam head and begin 
to regrow, repeated corrections in effect trap the waves 
in a region approximately u,6t long near the beam head, 
most likely causing excessive emittance growth there as the 
waves phase mix. Because of these problems, the method 
is not useful at low energy, because up/r - ~0’. Also, 
work by Lee and Smith [4] shows that inclusion of a real- 
istic amount of cell capacitance in the electric-field model 
substantially increases the growth length by reducing F, 
again reducing the effectiveness of the method. 
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