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Abstract

A method to minimize corrector excitations while
maintaining a set of constraints on the orbit is de-
scribed. This method, which is based on a singular
valne decomposition algorithm, was successfully ap-
plied in the final focus of the Stanford Linear Collider
in order to remove “fighting correctors” and improve
their tuning range.

I. INTRODUCTION

In beam lines with a large number of corrector mag-
nets individual corrector excitations can acquire large
values while the orbit remains bounded. In this case
the effect of different correctors cancel. Having cor-
rectors at large values is operationally inconvenient,
Here we
describe an algorithm which minimizes the sum of
squates of corrector excitations and, at the same time,
maintains orbit constraints, such as position or angle

because it limits the range of correction.

at certain points in the beam line.

II. ALGORITHM

First we have to find out how each corrector affects
eaclt constraint. In linear beam lines the response
of the orbit at one point to a corrector upstream is
given by the transfer matrix elements R, between
the corrector and the constraint point. In general the

total effect of all correctors on the constraint is then

t = Z Ryiy,en9; = E A;;9; (1
j j
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where p(i) = 1,3 if we have a a/y-position consiraint
and p(i) = 2,4 if we have a x/y-angle constraint.
q(5) = 2 if corrector j is a x-corrector and ¢(j) = 4
if it is a y-corrector. @; is the kick angle of corrector
4. We will call the matrix 4 the response matriv and
the vector ¢ the constraint vector. Note that in the
case where we have more correctors than constraints
the matrix A has more columns than rows and we are
dealing with an under determined lincar system.
Assume now that we have a corrector configuration
with corrector strengths ©;. The objective is to find
new corrector strengths ©; such that the constraints
are maintained and that 3_; G);f' is minimum. The first
objective can be fulfilled by making ©; the solution

of )
ZA{jG)J = Z Aij(“)j .
g 7

We require that the new corrector values 05 must pro-
duce the same constraint vector as the old corrector
values @j.

The second objective, namely to make 3, Oj min-
imum is automatically fulfilled by using a Singular
Value Decomposition (SVD) Algorithm [1] to solve
eq. 2.
plicitly constructs the null space of the under deter-

(2)

SVD finds a solution to eq. 2 and also ex-

mined linear system. It then subtracts the projection
of the solution onto the null space from the solution
and thereby minimizes the norm of the solution [1],
Le. 3, 0%

Note that we can simply add an extra vector to
the left hand side of eq. 2 to modify the orbit at one
constraint point, e.g. to steer through the center of
magnets with known misalignments.

III. APPLICATION

The algorithm described in the previous section is
implemented in a computer code that reads the
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quadrupole and corrector values in the Final Focus of
the Stanford Linear Collider (SLC). It then updates
an offline model of the beam line and generates a ta-
ble with the current corrector values and a few sample
constraints. The user can then remove correctors he
does not want to include in the ironing process and
can also modify the constraints. This table is then
used to set up the response matrix A and constraint
vector ¢ and subsequently performs the singular value
decomposition using routines from ref. 1. Finally the
new corrector values are printed, the old and new or-
bits are displayed and a file is generated that can be
read by the SLC control system to linearly interpolate
the corrector values from the old to the new configu-
ration.

We have applied this algorithm successfully to the
correctors near the interaction point (IP) which had
acquired large values. Here we choose the constraint
that the horizontal and vertical position and angle of
the orbit at the IP and the position in two sextupoles
are to remain fixed for a total of eight constraints.
All ten included correctors were allowed to vary. The
procedure brought the rms of the 10 included correc-
tors down to 30% of their initial value. Despite ing.
Despite the rather large predicted orbit changes in the
imtermediate region beam position monitor readings
dowunstream of the affected region showed very ljt-
tle changes. The newly found corrector configuration
proved to be operationally more convenient, because
the correctors’ tuning range were increased consider-
ably.

IV. ConNcLusioN AND OQUTLOOK

We liave described an algorithm to minimize corrector
strengths in beam lines which contain more correctors
than orbit constraints. The method was implemented
in a computer code and applied to correctors near the
[P of the SLC. The rms of the involved correctors was
successfully reduced to 30 % of their initial rmns.

We need to note that the method relies on an accu-
rate knowledge of the optics of the beam line as deter-
mined by the quadrupole lattice, because the trading
off of corrector effects depends strongly on the trans-
fer matrices between the correctors and the constraint
points,

This method is directly applicable to circular ac-
celerators. Either by constraining position and an-
gles al one point the modification of the corrector
configuration can he made transparent to the rest of

the accelerator. In this way the corrector changes act
similar to a local closed orbit bump. Alternatively,
instead of using the transfer matrices R in eq. 1 one
can use the closed orbit response coefficient matrix
C = R(1—5)"! where § is the one turn transfer map
starting at the corrector. In this case the bump is not
closed but the constraints are still satisfied.

The described algorithm can easily be extended
to incorporate other constraints such as fixed ver-
tical position at the end of a synchrotron radiation
(photon) beam line of length L. In this case the re-
sponse matrix clement A;; between corrector j and
the special constraint reads Rsy + L Ry;. The pre-
sented method was adapted for SPEAR and success-
fully used in the initial setup of SPEAR after a long
shut down [2]. In general the response matrix element
is the derivative of the constraint condition (the quan-
tity to remain unaffected) with respect to the correc-
tor strength. Following this prescription very general
constraints can easily be included.
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