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Abstract 

A method to minimize corrector excitat,ions while 
maintaining a set of constraints on the orbit is de- 
scribed. This method, which is based on a singular 
valuc~ deromposition algorithm, was successfully ap- 
plied in the final focus of the Stanford Linear Collider 
in order to remove “fighting correctors” and improve 
tlleii. tuning range. 

I. INTRODUCTION 

111 beam lines with a large number of corrector mag- 
nets individual corrector excitat.ions can acquire large 
values white the orbit remains bounded. In t,his case 
tliC c,ffcW of different correct,ors cancel. Having cor- 
rEctois at large values is operationally inconvenient, 
because it limits the range of correct,ion. Here we 
describe an algorithm which minimizes the sum of 
scluares ol’correct,or excitations and, at the same time, 
ItIaint,ains orbit constraints, such as position or angle 
at cert,airr points in the beam lint. 

II. ALGORITHM 

First WC have to find out how each corrector affects 
c;lch const,raint. In linear beam lines the response 
of ttlc orbit at one point to a corrector upstream is 
givcu by the transfer matrix elements R,, between 
the corrc~tor and the constraint point. In general the 
tot ai effect of all correctors on the constraint is then 

c, = CR ~w,~(~~~~ = c As,@, (1) 
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where p(i) = 1,3 if we have a .r/y-position constraint, 
and p(i) = 2,4 if we have a x/y-angle constraint. 
y(j) = 2 if corrector j is a x-corrector and y(j) = 4 
if it is a y-corrector. Oj is the kick angle of correct.or 
j. We will call the matrix A the r~eq~or~s~~ r~~o/vi.~, al~tl 
the vector c the const~irlt ~trcfo~. Note tha1, iIt thr 
case where we have more correctors I Ilan conht,raints 
the matrix A has more’ cdr~mns than I~OVJS ;~.ntl WC arc 
dealing with an under rErftrrni/~rrl lir/(trv agsfc’r11. 

Assume now that Eve have a correc,tor configuration 
with corrector strengths 6, The ol)jcctive is to find 
new corrector strengths 0, such that the c-onst,raints 
are maintained and that Cj Of is minimum. The first 
objective can be fulfilled by making 0, the solnt.ion 
of 

c A,, 0, = c A,,@, 
I 7 (2) 

\Ve require that the uc’w cor1(~( tar valuc~s 0, 111ust 1jr<>- 
duce the same ronstrilinl vc,ct.or as t II(, oltl col,rcctol 
values Gij. 

The second objective. nalrrclp to make C, 0: mill- 
imum is aut,omatically fulfilled I)y using ;1 ,SingUlU7, 
V&e Decomposition (SVD) !\lgorithin [l] to solve 
eq. 2. SVD finds a solution to eq. 2 and also ex- 
plicitly constructs the null space of the under det.cr- 
mined linear system. It then subt,ra.ct s the proje( t,iou 
of the solution onto t,he null spa.ce from the solution 
and thereby minimizes the norm of t,he solution [I], 
i.e. Cj 0;. 

Note that we can silnply add an cst.r;t vert.or to 
the left hand side of eq. 2 to Iuotlify tile orljit at OII~ 
constraint point, e.g. to steer t,hrough tllc cent,Pr Of 

magnets with known lllisalignlllent,s. 

III. APPLICATION 

The algorithm described in t,lLe previous srrt,ioll is 
implemented in a comprlter cotlr t.hat Wads t,llra 
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quad~pole and correct,or values in the Final Focus of 
the Stanford Linear Collider (SLC). It then updates 
an offline model of the beam line and generates a ta- 
ble with the current corrector values and a few sample 
const,raints. The user can then remove correctors he 
does not want to include in the ironing process and 
can also modify the constraints. This table is then 
11srt1 t,o srt up the response matrix A and constraint 
vector c and subsequently performs the singular value 
tlecomposit,ion using routines frown ref. 1. Finally the 
new corrcrtor values are printed, the old and new or- 
bits are displayed and a file is generated that can be 
read by the SLC control system to linearly interpolate 
the corrector values from t,he old to the new configu- 
ration. 

the accelerator. In this way t,he corrector changes act, 
similar to a local closed orbit bump. Alt,ernatively, 
instead of using the transfer matrices I? in eq. I one 
can use the closed orbit response coefficient ma.trix 
C = R( 1 - S)-’ where S is the one turn transfer map 
starting at the corrector. In this case t,he bump is not 
closed but the constraint,s are still satisfied. 

M’e have applied this algorithm successfully to the 
correctors near the interaction point (IP) which had 
acquired large values. Here we choose the constraint 
that t,he horizontal and vertical position and angle of 
the orbit at. t,he IP and the position in two sextupoles 
are to rcmajn fixed for a total of eight, constraints. 
All ten included correctors were allowed to vary. The 
procedure brought t,he rms of the 10 included correc- 
tors down to 30% of their initial value. Despite ing. 
Despite the rather large predicted orbit changes in the 
int.crmediate region beam position monitor readings 
tlowrlstream of the affected region showed very lit- 
t lc changes. The newly found corrector configuration 
p~.ovrd to bc operationally more convenient, because 
the corrc~cto~s’ t,uning range were increased consider- 
ably. 

The described algorithm can easily be exteutletl 
to incorporate other constraints such as fixed ver- 
tical position at the end of a synchrot,ron radiation 
(photon) beam line of length /,. In this case the re- 
sponse matrix clement lQj between correct.or j a.ntl 
the special constraint reads I& + L H+,. The pre- 
sented method was adapted for SPEAR and succcss- 
fully used in the initial setup of SPEAR aft,er a long 
shut down [2]. In general the response matrix element 
is the derivative of the constraint condition (the quan- 
tity to remain unaffected) with respect, t,o the correc- 
tor strength. Following t,his prescription very general 
constraints can easily I)e included. 
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IV. CONCLUSION AND OUTLOOK 

\1?e 11xvct described an algorithm to minimize corrector 
strengt,lis in beam lines which contain more correctors 
than orbit, constraint,s. The method was implemented 
iu a computer code and applied to correct,ors near the 
IP of the SLC. The rms of the involved correctors was 
successfully reduced to 30 % of their initial rnls. 

\\‘v need to note that the method relies on an acC,l- 
rat c knowledge of the opt,& of the beam line as deter- 
rnincd by the quadrupole lattice, because the trading 
off of corrector effects depends strongly on the trans- 
fer matrices between t,lie correctors and the constraint 
ijoints. 

This method is directly applicable to circular ac- 
c.clerato1.s. Eit.her by constraining position and an- 
gles at on<’ point, the modification of the corrector 
confignrat,ion can be made t,ransparent to the rest of 

2. W. Corbett,, et. al., Optimum Ream Steering of 
Photon Ream L&s in SPEAR, t.hese proceetl- 
ings. 
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