
EIGENFUNCTIONS OF THE TRANSFER MATRIX 
IN THE PRESENCE OF LINEAR COUPLING* 

G. Parzen 

Brookhaven National Laboratory 
Upton, NY 11973. USA 

Abstract 

This paper presents an approach to computing the 
change in the linear orbit parameters, due to a perturbing 
field that couples the r and y motions, by computing the 
change in the eigenfunctions of the transfer matrix and 
then using the relationship between the eigenfunctions 
and the orbit parameters. This can be compared with the 
approach [l] that computes the change in the transfer ma- 
trix and uses the relationship between the elements of the 
transfer matrix and the orbit parameters. For the case of 
coupled motion, the eigenfunction approach appears to be 
easier to apply than the transfer matrix approach, partly 
because the relationship between the transfer matrix and 
the linear orbit parameters is considerably more compli- 
cated in this case. Results are found for the change in 
the four eigenfunctions of the transfer matrix in the pres- 
ence of linear coupling, and for the relationship between 
the eigenfunctions and the orbit parameters. 

A. The Transfer Matrix in Terms of the Eigenfunctions 

Given the four eigenfunctions +i, i = 1,4 which are 
normalized such that ;T SC, = 2i 

(3) 
where S is r’o ‘1 d 01 

then it will be shown that one can find the transfer matrix 

T(s’so) fromT(s,~O) = (-1/2i)U(s)~(s,,) 

iT=Es (4) 

u = [X1XZX3X‘J. 

I. THE EIGENFUNCTIONS AND THE LIN- 
EAR ORBIT PARAMETERS 

The eigenfunctions may be defined in terms of the 
transfer matrix, T (s, so), 

x(s) =T(s,%)Z(SO) (10) 
In Eq. (1) T(s,se) is a 4 x 4 matrix, z(s) is a 4 x 1 
column vector 

32 = X,PSlY,P, (14 

U is a 4 x 4 matrix and Zi is a 4 x 1 column vector. 
Eq. (4) will be derived for the Z-dimensional case. 

The generalization to 4 or more dimensions is clear. In 
two dimensions a solution of the equation of motion can 
be written as 

x = a1x1+ a2x-2, x2 = t*, 

al =IG; Sx/2i,az = a; =Zi Sxf (-2i) 
(5) 

Evaluate ai and as using x(sc). Then 

+ = (l/24 (Xl (s) ;I (so) - 22 (s) z; (so)) s x(s0) 

2 = (VW (Xl (s) :I (so) - 2; (s) G1 (so)) s x(s0) ,c\ 

In the absence of solenoids, p, = I’ and p, = y’. The 
eigenfunctions are those I (s) that satisfy 

T(s+L,s)x=Xx, (14 
where L is the period of the magnetic guide field. 

It can be shown [l] that there are 4 eigenfunctions 
Ed (s) , i = 1,2,3,4 with eigenvalues Xi, and which occur 
in pairs such that for stable motion, 

22 = x;, x:q = x;, AZ = x;, xq = x;. 

It can be shown (21 that the eigenfunctions are 
solutions of the equations of motions, and that 

XI(S) = exp (i2wslL) fl (~1, 

x3(s) = exp (i2*vss/L) fs (s) . (2) 

ft (a), fa (s) are periodic in s with period L, and vi, vz 
are the normal mode tunes. Note z‘i and fi are both 4 x 1 
column vectors. 

Thus - 
T (s, s,,) = (-1/2i) ci (6) u (so) (7) 

One may note that V = (-2i)-3 U(s) is symplectic as 
T (s, s) = I and Vv = I. 

Eq. (7) shows that knowing the eigenfunctions +i is 
equivalent to knowing the transfer matrix T(s,so). Eq. 
(7) also shows that T(s,so) is symplectic as it is the 
product of two symplectic matrices, V(s) and v(se). 

B. Reiationship Between Eigenfunctions ad the Ltnear 
Orbit Parameters 

The eigenfunctions will now be related to the 10 
linear orbit parameters for the coupled motion 

In two dimensions, the eigenfunction is related to the 
3 orbit parameters p, o, $ by 

‘Work performed under the auspices of the U.S. Depart- 
ment of Energy. 

and xz = XT. xi obeys the normalization condition 
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:1 (so) [ 1 
(oJ 

2 = (1/2i) [zi (s) x; (s)] S _* 
I1 (so) 

s x (so) 
- 

x = (-1/2i)u(s)u(sl))x(so) 

> 
exp (+I (8) 

i$ S xl= 2i (9) 
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In four dimensions, one can go from the coordinates, 
z,pr,y,p, to an uncoupled set of coordinates v,p,,u,p, 
the normal coordinates, by the transformation [3] 

z=Rv (10) 
1 I 

R= 
Icosp Bsin 9 

-Dsinp Icosp > 
(11) 

I and R are 2 x 2 matrices. I is the 2 x 2 identitv matrix. 
D = D-’ and IDI = 1. R is a symplectic matrix, 

?iR=I 

E=S?is 
(12) 

p and the 3 independent elements of D may be considered 
as 4 of the orbit parameters. They are periodic in s. The 
other 6 orbit parameters are the ,&, (~1, G1 and pz, (~2, $2 
of the 2 normal modes. 

It can be shown that z’ S+ is a constant [l] of the 
motion. Also if I and v are related by a symplectic matrix 
then Ir* 

1: Sx=2)‘Sv (13) 

The transfer matrix for the zi coordinates is given by 
21 (s) = u (s, so) v (so) 

L’ = K(s)TR(so) 
(14) 

It can then be shown that the eigenfunction of U, vI, and 
the eigenfunctions of T ~;e~V~d by 

I I (15) 

The ‘u coordinates are uncoupled. so the z)i eigenfunc- 
tions can be written down using Eq. (8) as - 

VI= (y)q u3= (j2) 

fh= (p;i(~,+i.)e~~(iYI)I (16) 

v-2*= 4, vq = v; 

one may note that ‘ul Svl =;a Svs = 2i. 
be written down using I = RV as 

I1 = (-~~~~i~fp) 

23 = (%;zf;) 

Eq. (17) relates the eigenfunctions 2; 
parameters. Also zr Sz1 =G; Szs = 2i 

-, 

The Zi can then 

If the eigenfunctions are known, then Eqs. (17) can 
be inverted to find the 10 orbit parameters. One can use 
the additional relationships 

dill 1 dtlz 1 

(17) 

ds=j?y> ds=z (18) 

to the 10 orbit 

rzll i 2‘1 = 212 
I 1 213 

114 -. 
From Eq. (17) 

2‘11 = p: cospexp(i$~) 

(19) 

(20) 
which gives the two relations I 

$1 =d+11&w= lwl (21) 
where ph (211) means the phase of +11. 

Assuming ~~11 is known, ~1 can be found from Eq. 
(21) and one can find p1 from p1 = d&/ds. Once p1 is 
known, one can find cosip from Eq. (21). One may note 
that the results for the tune y and ~2 comes directly out 
of solving the equations of motion for the eigenfunctions 
(see section II). 

To find the emittance c1 from the eigenfunctions, one 
can use the relationship [4] 

Cl = 1 ;; s q12 (2‘4 

II. PERTURBATION SOLUTIONS FOR THE 
EIGENFUNCTIONS 

The skew quadrupole field is described by al (.s). On 
the median plane, the field B, is given by 

E, = -I?0 01 x, (23) 
where & is the main dipole field. p is the radius of 
curvature of the main dipole. 

The solutions of Eq. (23) were found in two previous 
papers [5,6] when uz,vu are near the resonance line 
vr = vY + p. These solutions may be written as 

qz = Aexp(iv,,,f?,) 

(24) 

(n-b-vg)(n+p) 

bn= ~Jds(~=~~)lU1exp[i((n-v,)D,+vya,)l 

cn = -& 
J 

ds(p&)f al ew Ii (ud, + (n - 14) S,)] 

(UY>S - I+) 2vyc, exp [-i (n - p) S,] 
gn = au. (n - vz - uy) (n - P) 

Au = (1/4np) ids (P,P,)* 01 exp P(-vz,,& + u~,~B~)I 

cr1 = -ip; +p, tan ‘pdpplds, ‘~2 = -i@! +& tanpdv/ds 

which are valid in absence of solenoidal fields. 
To further illustrate how expressions for the eigen- 

functions can be used to compute the linear obit pa- 
rameters, consider the problem of finding &, the beta 
function of the normal mode with ~1, assuming that the 
eigenfunctions are known (see section II). 

The eigenfunction 11 may be written as 

& = !b,I/~z, @Y = tiY/VY 
u,,, and uy,s are the solutions of 

vz,, = uy,a + PI (% - us) = lAyI (25) 
There are two solutions of Eq. (25) corresponding to the 
two normal modes. For the mode for which v,,, + V= 
when a1 -+ 0, we will put v,,, = ~1, vY,s = v1 -pp. For 
the mode for which v~,~ + vY when al -+ 0, we will put 
u Y,J = ~2, v,,, = vz +p. The A and B coefficients are 
related by 
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& = - (Vl - v=) Al for the ~1 mode 

A2 = -(v’” vy)B2 for the ~2 mode 
(26) 

AV* 

The results for the eigenfunctions, Eq. (24) were 
found by solving the equations of motion to first order 
terms in ai. It has been assumed that v,, vy the unper- 
turbed tune. is close to the coupling resonance V, = vy+p 
and the V, - vv - p can be considered to be small, of the 
same order as o1. This last assumption allows the equa- 
tions to be simplified and it is the case of most interest 
to us. 

The A and B coefficients in Eq. (24) have now 
to be chosen so that the eigenfunctions are properly 
normalized, which means the eigenfunctions can be then 
expressed in terms of the orbit parameters like 01, (~1, $1 
and p2,a2, g2, To understand this better consider the 
2 dimensional case. If we wish the eigenfunction to be 
related to 17, $ by 

then 
z = p112 exp (iij) , 

p, = 2’ = /3-1’2 (-a + i) exp (ii) 
and the two eigenfunctions are given by zi, z; where 

El= p&;+i) 
[ 1 exp (+) 

These eigenfunctions are normalized so that 

;; sx, = 2i 

(27) 

(28) 

s= -“1 ; [ 1 
si is the transpose of 21. 

The normalization given by Eq. (28) gives the rela- 
tionship between 11 and /3,o,$ given by Eq. (27). It is 
shown in section I, that in the 4 dimensional case the nor- 
malization Eq. (28) will allow the eigenfunctions ~1,~s 
to be related to 01, ai, $i and /3s, os,& in a correspond- 
ing way. In this case, S is now the corresponding 4 x 4 
matrix. Eq. (28) will be used to determine the coeffi- 
cients A, B. This gives the relationship, see Ref. 7 where 
the following relationship is derived, 

IAl (vz,s/vz) + PI2 (vv,s/uy) = 1. (29) 
Eq. (29) together with Eq. (26) determine A and B. 

For the VI mode 

El = --A,, 

1412 (!$+%$l~~~) =I, (30) 

For the ~2 mode 

A2 = -yB2, 

t31) 

A case of particular interest is when the linear cou- 
pling has been corrected to make Au u 0. There are then 
two solutions of interest, 

1. IAvl a Iv, - vy -PI 
2. Iv, - vu - pi < \Avl 

In case l., Au has been made small enough so that the 
tune v,, v,, is well outside the width of the difference 
resonance. This may not always be achieved. u,, vy may 
be very close to the difference resonance, and the best 
setting of the correction system to minimize the tune 
splitting does not have to correspond to Av = 0. 

If IAvl < Iv, - r+ - pl, one finds 
IAll = 1, B, = 0, 

The two modes aJ,“eza,=,cfbe de%up!e!d. 
(32) 

If Ivz - vy - pl < IAYI, one finds 
\All = l&j = l/v+ 

iA21 = lB2l = l/d 
(33) 

The two modes appear completely coupled. 
Examples of using the eigenfunction approach to 

compute the linear orbit parameters are given in Ref. 4,7. 
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