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Abstract 

The Taylor map coefficients obtained by any tracking code 
with differential algebra techniques accumulate two types 
of errors: computer rounding errors and errors defined by 
size of integration step. There is the approach free from 
defects of second type. That is the method of undeter- 
mined coefficients. Unfortunately it is not easy to produce 
computer code for the usually used form of this method. In 
this paper we present algorithm combining the advantages 
of method of undetermined coefficients and the calculating 
elegance of Lie algebraic techniques. The general approach 
using only the common properties of Lie groups and Hamil- 
ton’s equations allows to obtain the truncated Taylor map 
for orbital and spin motion by the same way. 

I. INTRODUCTION 

The computer programs for analytical manipulations with 
polynomials have become an essential tool for the nonlin- 
ear design and analysis of circular accelerators [l], [2], [3], 
[4], [5]. The powerful methods as the numerical integra- 
tion with using the differential algebra techniques and the 
direct summing the Lie exponent series with the machine 
precision allow to obtain the Taylor map coefficients up to 
the arbitrary hight order of the nonlinearity. The steps 
number in these methods depends on a desirable precision 
of the result and the length of computer word. In this pa- 
per the algorithm, the number of the steps in which does 
not depend on a precision, is described (like in the Gauss 
method of the matrix inversion the number of operations 
depends on the matrix dimension only). The main idea 
of this approach can be applied to the wide class of the 
hamiltonian and nonhamiltonian systems of ordinary dif- 
ferential equations. Lower this method is illustrated for the 
orbital motion through one magnet element (quadrupoles, 
sextupoles and etc.) in circular accelerators. 

II. REALIZATION FOR ORBITAL 

MOTION 

We will say that the function g(z,t) E HP(k) if g(.z, t) 
is the homogeneous polynomial of order t in respect to t 
with t-dependent polynomial coefficients. 

Define the order of Taylor map truncation m and con- 
sider the initial Hamiltonian in the form 

H*(%,2)=H:(%)+H~(%,1)+‘.‘+H~+,(z,t) (1) 

where z = (z, y) are the canonical orbital variables 
(dim(z) = 2n) and Hf E HP(I). 

Introduce two additional canonical variables T, L and 
new Hamiltonian 

H2(%,T, L) = Hl(*, r) + L 

One obtain the autonomous differential equations system 
in the space of larger dimension 

dz c9HZ dy dH2 
--- 

dt= ay’ z- az 
dr aH2 dL dH2 -- 
Yit= aL' dt= a7 

All next steps consist of the sequence of canonical vari- 
ables transformations: 

a) So there is the symplectic 271 x 2n matrix A that the 
second order part of the new Hamiltonian 

H3(r, T, L) = H2(A z, T, L) 

has the form: 

H;(Z) = Hz(z) + Hz(r) 

Hz(*) = 2 Xj Zj Yj 

j=l 
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where {Hz(z), fiz(z)} = 0 ({., .} is the Poisson bracket) 
and 

E= 
{ 

0 if Xj # Aj+l 

1 . otherwise 

1 

0 
CT= 

if Xj” + tj # 0 
1 otherwise 

(see ref. [S]). 
b) Perform the Lie transformation of the Hamiltonian 

H3 : 

H4(r, r, L) = ezp(: --7&(z) :)H3(z, T, L) = 

m+l 
= a,(z) + L + c H:(ezp(: -r&(z) :)z, T) 

k3 

It is possible to proof directly that the series 

ezp(: -T&Z(~) :).z 

contains the finite number of members only. We note also 
the way which can be applied to non-hamiltonian equa- 
tions. 

Consider the system 

where N is a nilpotent matrix (N’+’ = 0), D N = N. D, 
f(w,t) = fi(wt)+ ..'+fm(w,t), fi(w,l) E HP(I). 

Using the coordinate transformation 

one obtain 

du 
- = D u + g(u, t) = 
dt 

= D u + ezp(-t . N) f(ezp(t N) u,t) 

Here a function g(u, t) has the same structure as a function 
f(w,f). i. e. g(u,t) =g~(u,t)+...+g~(~,~) andgr(u,t) E 
HP(l).’ 

So we obtain after steps a) and b) the Hamiltonian with 
the diagonal second order part. 

c) This part consists of m - 1 steps of nonlinear coordi- 
nate transformations 1 = 3,4, ,772 + 1 

H’+‘(z, T, L) = ecp(: Wl(r,r) :)H’+‘(t, T, L) 

where \V,(Z,T) E HP(I). 
If Wl(.z, T) satisfies the equation 

then the final Hamiltonian has the form 

N(z, r, L) = Hmt3(z, T, L) =,,,+, 

=m+l I& + L + N3(z, T) + + Nm+l(z, 7) (3) 

where =,,,+I indicates that the right and left side agrees 
up to order m + 1. 

The equation (2) is divided in independent equations 
for coefficients of monomials t’ yJ. Each of them has the 
form: 

dw 
-;r;+p.w=n-h (4) 

where p = (I - J) A. For any given polynomials 

h(r) = ho + fil ‘7 + + ht rE 
n(r) = no + n1 T +. + nk 9 

the equation (4) has the polynomial solution. If p = 0 
then 

W(T) = const+ 

+(no-ho).T+‘~~+ & (nt - hk) ?+I 

else 

i 

wk = t. (nk - hh) 
wt-1 = ;. (nl--1 - hk-1 - t. wt) 
. 
wo = ; (no - ho - WI) 

d) Using the notation 

: C(z, T) := 

= ezp(: W,,,+l :) .ezp(: W, :)ezp(: -rfi, :) : A : 

we obtain finally 

: C(z, T) : H2(r, r, L) =,,+I N(r, 7, L) 

ezp(: -H2 :) =m: C :-l ezp(: -N :) : C : (5) 

e) In mathematical sense the equation (2) has the solu- 
tion for any Nl E HP(I). Consider the important partic- 
ular case Nl = N,(z) and N = w(z) + L. In this case for 
any real (I we obtain: 

ezp(: -HZ :) =,,, ezp(: crL :) : C(z, r+ a) :-’ 

.ezp(: -N(z) :) : C(t,r+ 1 + a) : ezp(: -(l +a)L :) (6) 

478 
PAC 1993



If the initial Hamiltonian H’ = H’(t) then from (6) the [2] M.Berz. COSY INFINITY Version 6 reference man- 
important representation follows ual. Technical Report MSUCL, 1993. 

ezp(: -H’ :) =,,, 

=m: C(%, 7 + a) :-l ezp(: -N(z) :) : C(r, 7 + 1 + a) : (7) 

and in z-space we have 

ezp(: -H’(r) :) =m 

=m: C(%, CT) :-l ezp(: -Iv(z) :) : C(r, 1+ o) : (8) 

If (l\;‘(z), Hz(r)} = 0 then for any given order of 
Taylor map truncation m the right side in (8) can 
be calculated for the finite number of operations 
with polynomials. 

The representation (8) includes the normal form decom- 
position in the nonresonance case [7]. It also includes the 
more unusual factorization with N(z) = &z(z) which ex- 
ists for any initial autonomous Hamiltonian H’(z) inde- 
pendently of properties Xj. If we use the possibility of the 
arbitrary choice of Ni(r)([ = 3,. , m + 1) we can obtain 
the another interesting results from formula (8). 

III. COMPUTER IMPLEMENTATION 

What are more difficult steps in the computer realization 
of the described above algorithm? For the arbitrary initial 
autonomous Hamiltonian it is the finding the matrix A in 
the point a) and the process of the obtaining the solution 
of the equation (4) in the case when p does not equal zero 
but very small. Fortunately, we never meet this situation 
when we consider magnet elements like ideal quadrupoles, 
sextupoles and other multipoles. The method of the map 
calculation with help of the representation (8) has been 
implemented in the computer code VasiLIE [3]. To the 
author surprise the calculation speed of this algorithm is 
not so slow as it seems before the realization. It is near 
the same as the speed of the direct summing Lie exponent 
series with the machine precision (the tests were performed 
using IBM PC 386 computer for maps of 4 variables and 
orders 6 - 10 and o = 0, -0.5). 
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