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Abstract 

The concept of r.m.s. emittance is extended to the case of 
several degrees of freedom that are coupled. That multi- 
dimensional emittance is lower than the product of the 
emittances attached to each degree of freedom, but is conserved 
in a linear motion. An envelope-hyperellipsoid is introduced 
to define the p-functions of the beam envelope. On the 
contrary of an one-degree of freedom motion, it is emphasized 
that these envelope functions differ from the amplitude 
functions of the normal modes of motion as a result of the 
difference between the Liouville and Lagrange invariants. 

1. INTRODUCTION 

A statistical definition of beam emittance has been 
originally introduced by P. Lapostolle [l] in a 2dimensional 
phase space of an one-degree of freedom motion. The 
statistical point of view is the most natural way to study the 
particle spread in phase space. It has been reviewed in [2] and 
it is here extended to the case of several degrees of freedom 
that are coupled. The key role is here played by the covariance 
matrix of the particle coordinates. The emittance is 
proportional to the square root of its determinant. It is also 
involved in the expressions of the Liouville and Lagrange 
invariants that characterize a linear motion. 

2. THE STATISTICAL DEFINITION OF 
MULTIDIMENSIONAL EMITMNCE 

The second-order moments give the main statistical 
characteristics of a set of points in a 2pdimensional phase 
space @ is the number of degrees of freedom). With respect to 
a frame, the origin of which is taken at the barycentre of the 
points, the moment <x,xb> is obtained by averaging the 
coordinate product xoxg over the set of points (xo, xg are two 
coordinates of one point : a, p = 1,...,2p). The second-order 
moments are embodied in the covariance matrix V : 

( <x, x1 > . . . <Xl xzp > 
v = 

I 

. . . . . . . . . 
<x2&) x, > . . . < xzp Xlp > 

Hereafter, it is convenient to write the covariance matrix 
as the statistical average of a formal product : 

v = (x3) 

where x is a coordinate column-vector and % is the transposed 
w&hate row-vector. 

The covariance matrix V is real and symmetric. It can 
always be diagonahzed by a similarity transform, defied by 
an orthogonal matrix f2 (M = 1). Assuming that the 
coordinate frame is orthogonal, that transform corresponds to 
a change of orthogonal frame with respect to which the new 
coordinate vector is X = Qx. One recognizes that the new 
matrix W = QV& is the covariance matrix w.r.t. the new 
frame: 

The covariance matrix W w.r.t. the new coordinate frame 
is : 

(xf) 

I 0 

0 ‘1. 0 

w = (x;) ... 0 

0 0 ..’ (x:,) 

3 

The diagonal element <X-,> is the mean square distance to 

the hyperplane perpendicular to the frame axis OXo. The 

square root I/~ < X, > is the corresponding r.m.s. distance 

ew. 

To measure the spread of points in phase space, it is 
natural to define the multidimensional emittance I$ as : 

Ep = 2o(X,).2a(X,)-.20(X,,) 
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i.e. : 

Ep = 22p JGipj 

where one has used the property that V and W have the same 
determinant, in order to express the emittance ep as function 
of the second-order moments w.r.t the original frame. 

In a two-dimensional phase space that definition 
reproduces the so-called r.m.s. emittance, fit introduced by 
P. Lapostolle [l] : 

The numerical factor 22P is optional. It is just introduced 
to give a realistic and quantitative measure of the volume 
occupied by the points in the phase space. 

It may even happen that the emittance ER vanishes 
although none of the emittances &(I), &c2). . . . , E@) vanishes. 
That occurs when two coordinates xo, xg corresponding to 
two different degrees of freedom are linearly dependent, i. e. 
fully correlated. For instance, in the case of the 4dimensional 
transverse phase space with coordinates x, xl, y, y’. it occurs 
if the coordinates x and y would be proportional. 

It is worth noting that the mean distances iX$ sre the 
eigenvalues of the covariance matrix V and that these 
eigenvalues are never negative (V is a semi-definite positive 
matrix). Conversely, any matrix real, symmetric, and semi- 
definite positive, can be considered as a covariance matrix. 
Effectively, its positive eigenvalues can be taken as the mean 
square distances to the hyperplanes perpendicular to the axes 
of a particular coordinate frame. 

3. EMIIITANCE CONSERVATION AND 
INVARIANTS IN LINEAR MOTION 

In a linear motion, governed by a quadratic hamiltonian, 
the conservation of the multidimensional emittance results 
from the Liouville theorem. If R is the linear and symplectic 
mapping that connects the particle coordinates at time t to the 
coordinates at initial time to, the covariance matrix V is 
mapped according to : 

Normally, a 2pdimensional phase space is the product of 
p two-dimensional subspaces, each one being the phase space 
for one degree of freedom of the particle motion. For instance, 
the product of the two-dimensional phase space for the x- 
transverse motion, of the two-dimensional phase space for 
the y-transverse motion and of the two-dimensional phase 
space for the z-longitudinal motion is a six-dimensional phase 
space. Using a generalization [3] of the Hadamard determinant 
inequality, it can be shown that the 2pdimensional emittance 
cp cannot be larger than the product of the emittances &cl), 
E(~),...,E@) in the p two-dimensional subspaces : 

v (t) = (x (t).; (t) ) = ( Rx 006 (to) ) = RV (to) g 

The Liouville theorem implies de@) = 1 and det(V) is 
constant. 

Moreover, the geometrical shape of the particle spread in 
phase space can be made more precise by defining an 
envelope-hyperellipsoid H. With respect to the coordinate 
Came corresponding to the diagonal covariance matrix W, the 
equation of H is : 

2P Xi 
c - =l 

a=1 4(x2,) 

E 
P 

5 p E(2) . . . ,(p) 

The equality only occurs when the degrees of freedom are 
uncorrelated, i.e. when all the correlation moments cxoxp> 
of two coordinates xo. xg corresponding to two different 
degrees of freedom are vanishing. Usually, a beam is said 
coupled when the degrees of freedom are correlated. 
Accordingly, the correlation moments between them will be 
hereafter named coupling moments. For instance, in the case 
of the 4-dimensional transverse phase space with coordinates 
x, x’, y, y’, there are four such coupling moments : cxy>, 

uy’>, cx’y>, cx’y’>. The 4dirnensional emittance e2 is the 
product of the emittances ox, my, of the x and y transverse 
motions, only if these four coupling moments vanish. 

The preceding inequality geometrically means that the 
volume occupied by the points in the 2pdimensional phase 
space is less than the product of the areas occupied on each 
two-dimensional subspace, apart when they are uncoupled. 

either, with a matrix notation : 

jiw-lx=4 

Returning to the normal coordinate frame by an 
orthogonal transformation, the equation of H keeps the same 
form : 

&-lx=4 

470 PAC 1993



The volume Lit(H) of the envelope-hyperellipsoid H is 
proportional to the emittance Ep : 

lcp &-l(H)=-& 
m+l) p 

and the conservation of the emittance expresses the 
conservation of the volume. 

The projection of the envelope-hyperellipsoid H on any 2- 
dimensional subspace, as x, x’, is the envelope-ellipse 
describing the geometrical shape of the particle spread in that 
subspace. Its equation is [2] : 2 

x2 (x”) -2xX’ (xx? + x92 (x2) = 2 

For instance, in the 4dimensional phase space of the 
coupled transverse betatron motion, these two invariant 
quadratic forms determine two hypemllipsoids. The particle 
moves on their intersection that is a bidimensional torus. As 
well-known, that motion of an individual particle is 
characterized by two frequencies ml,02 and two amplitude 
functions PI, 82. These two amplitude functions are different 
from the beam envelope-functions px, By defmed above. They 
become identical only in the case of an uncoupled motion. It 
is due to the fact that the Liouville invariant and the Lagrange 
invariant are identical in the case of an one-degree of freedom 
motion. 

In a coupled motion the 2dimensional emittance ax is not 
constant. To define, as usual, the envelope-functions Bx, ax 
and TX of the beam in the x,x’ subspace, one must use the 
invariant emittauce &p instead of the emittance EX in that 
subspace : 

PxEp=4(x3 
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-fxEp = 4(x'2) 

axep=-4(xx') 

with the relations : 

2 Pxyx-ax= Ex 
(7 Ep 

These envelope-functions, defined in each subspace, 
together with the coupling moments completely characterize 
the beam evolution in phase space. 

Now, the LHS of the envelope-hyperellipsoid equation : 
f; V-1 x is a quadratic form left invariant by any linear 
mapping. It is the Liouville invariant expressing the 
hypervolume conservation in phase space. Another invariant 
quadratic form can be obtained from the Lagrange invariant 
[41 : 

where xi and xj are the coordinate vectors of two particles i 
and j, and 1 is the symplectic unit matrix. Squaring that 
invariant and averaging over the particle j, one obtains the 
invariant quadratic form : 
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