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Abstract 
Depolarization of a polarized electron beam injected 

into a damping ring is analyzed by extending calcula- 
tions conventionally applied to proton synchrotrons. Syn- 
chrotron radiation in an electron ring gives rise to both 
polarizing and depolarizing effects. In a damping ring, 
the beam is stored for a time much less than the time for 
self polarization. Spin flip radiation may therefore be ne- 
glected. Synchrotron radiation without spin flips, however, 
must be considered as the resonance strength depends on 
the vertical betatron oscillation amplitude which changes 
as the electron beam is radiation damped. An expression 
for the beam polarization at extraction is derived which 
takes into account radiation damping. The results are ap- 
plied to the electron ring at the Stanford Linear Collider 
and are compared with numerical matrix formalisms. 

1. Introduction 
In an ideal synchrotron, the vertical polarization com- 

ponent of a polarized injected beam is conserved. Due to 
coupling of the spin to the orbital motion, however, the 
spin motion is perturbed. Depolarizing resonances occur 
whenever the electron spin tune, us, equals a resonance 
tune, K, by satisfying v, = K E n+mP+qu,+rv,+sv,,,, 
where P is the superperiodicity, V= and vT are the hori- 
zontal and vertical betatron tunes, v.,, is the synchrotron 
tune, while m, n, Q, r,and s are integers. In the absence of 
any longitudinal and radial error fields, the spin tune, v,, 
is equal to ay, where a = 0.011596 is the anomalous part 
of the electron magnetic moment and y = $$, where 
E is the electron energy, m, is the electron m&s, and c 
is the speed of light. In this paper we study the effects 
of depolarizing resonances on the spin motion of polarized 
electrons injected into a damping ring. 

2. Spin Precession and Depolarizing Resonances 
The spin of an orbiting particle in a synchrotron obeys 

the Thomas-BMT equation’, which describes the spin mo- 
tion in the presence of electromagnetic fields in the labo- 
ratory frame. With no significant electric fields in the ac- 
celerator, the Thomas-BMT equation reduces to 

dg 
dt = -ym eSx[(l+ay)~~+(l+a)~,,], (1) 

where s’ = (S,, S,, S,) is the spin vector, e is the electric 
charge, and y is the relativistic factor, while 8, and B’,, are 
the magnetic field components transverse to and parallel 
to the instantaneous velocity of the particle. 

* Work supported by Department of Energy contract 
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The magnetic fields in the Thomas-BMT equation 
may be expressed2 in terms of the particle coordinates. 
The corresponding spinor representation is 

-t-k 

*‘, 
(2) n 

where IE, t, and r depend on the particle coordinates. The 
polarization components are obtained by taking the expec- 
tation value of the Pauli matrix vector, 5, i.e. S, = Qt,,Q. 
The off diagonal matrix elements characterize the effect of 
spin depolarization due to the coupling between the up and 
down components of the spinor wave function. Given the 
periodic nature of a synchrotron, the coupling term may 
be expanded in terms of the Fourier components; i.e. 

t + ir = C cje-iK,e (3) 
in which 0 is the particle orbital angle, Kj is the value 
of the resonant tune for the jth resonance, and Ej is the 
resonance strength and is given by the Fourier amplitude 

ej = $ J(t + ir)eiKje& = s c ‘~;(~z$K,o, 

(4) 
This corresponds to summing over the precession angles 
due to each radial error field. 

In the single resonance approximation3, the spin equa- 
tion in the particle rest frame is given by 

$=-i(:ye :at)@ with ,=e,e-iKe. (5) 

Transforming3 the spin e uation to the resonance preces- 
%Q sion frame using Qx = e’ Us \E, we obtain 

d@K 
- = ;(6& + eRUz - <rC$)@K, 

d0 
where oi are the Pauli matrices, c = eR + ier, and 6 = 
K - ay measures the nearness to the resonance. 

The general solution of Eq.(6) can be expressed as a 
linear combination of two eigenmodes: @K = ~~@KT + 
Cz@Ki with CF + Cz = I. Let Si be the magnitude of the 
injected polarization, Sj the magnitude of the extracted 
polarization, and S, the vertical component of the stored 
polarization in the resonance precession frame. For a ver- 
tically polarized injected beam, the polarization can be 
obtained by taking the expectation value of oZ giving 

s* = ;(lcl12 - IC212) + &GC21 cos(XB + 4). (7) 

where the phase angle r$ is given by 4 = arg(CiCs), Jr = 
J(X * ~5)~ + le12, and A = Jv. 

When c = 0 in Eq. (7) we have 6 = X and therefore 
s, = s, = Icy2 - IC212, where Si is the polarization far 
from resonance; i.e. the magnitude of the injected polsr- 
ization. Averaging over many revolutions around the ring 
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Figure 1. The ratio of the final to injected beam polar- 
ization as a function of the nearness to the resonance 
for three different resonance strengths. 

we find, with lC*l = 1 and I&J = 0 corresponding to a 
pure initial state, that 

w K-a7 

T=&E&jGp‘ 
(8) 

On resonance, where If = ay, the polarization is zero. 
Just off resonance we may write -$$ = cos a, so the ratio 

9 may be interpreted as the projection of the injected 
polarization onto S. For a constant beam emittance, (r, = 
of and the final polarization, Sf, is given by projecting 
(S,) onto the vertical direction: 

s, = gl W - a-r12 
t 

s, cos Of = si co2 a = (K _ ar)2 + 

The dependence of the polarization on the resonaic;! 
strength is shown in Fig. 1. The ratio of the final 
to injected polarization, 2, is plotted as a function of 
6 = K - a~ for three different resonance strengths. 

3. Spin Dynamics in an Electron Ring 
Synchrotron radiation gives rise to both polarizing 

and depolarizing effects. Spin flip radiation tends to polar- 
ize the beam on a time scale which is long relative to the 
damping time and hence the store time. Spin flip radia- 
tion need therefore not be considered. However, radiation 
damping of the betatron oscillations is important because 
the resonance strength is proportional to the vertical be- 
tatron oscillation amplitude. The time dependence of the 
orientation of the spin vector is accounted for by noting 
that the turn by turn spin precession is adiabatic. The fi- 
nal polarization, Sf, is then a projection of the precessed 
spin vector onto the vertical. Thus Sf = Si cos cy( cos crf or 

s, = K-ay K-a? 

v’(K - ay12 + letI2 J(K - a-y)2 + IQ 
si, (10) 

where ltil is the resonance strength at injection and IceI is 
the strength at extraction. 

Figyre 2. Graphical representation of Eq. (10). 
7Yllt 

A graphical representation of Eq. 10 is shown in 
Fig. 2. The injected polarization, Si, is first projected 
onto the stable spin axis, the orientation of which is deter- 
mined by the resonance. This projection, (SL), precesses 
adiabatically to (Si) as the resonanance strength changes. 
Then (SL) is projected back to the vertical to obtain the 
polarization at extraction, Sj. 

We now average over a Gaussian particle density dis- 
tribution. In emittance space, the distribution function is 
given by p(v) = &e-k, where 17 is the phase space 
occupied by a single particle and qrrna is the beam emit- 
tance. The final polarization is then 

(K-- adp(Ghi (K - a~)p(dh (11) 
(K - a-rl2 + Id2 J(K - ay)2 + IceI 

where p(s) and p(qe) are the distribution functions for the 
injected and the extracted beam, respectively. 

4. Application to the SLC Damping Ring 
During the 1992 physics run, polarized electron beams 

were created and transported to the interaction point for 
the first time4. Vertically polarized electron beams were 
injected into the damping ring at a nominal energy of 1.153 
GeV. The store time was 8.33 ms while the damping time 
was about 3.7 ms. The resonance strengths at injection 
and extraction were estimated using DEPOL2 which cal- 
culates the resonance strength based on Eq. 4. An injected 
to extracted emittance ratio of about 20 was assumed with 
the normalized beam emittance at extraction equal to 15 
mm-mrad. The betatron tunes were 8.23 in I and 3.25 in y. 
Plotted in Fig. 3 is the extracted polarization as a function 
of ay, where the solid line at ay = 2.6176 corresponds to 
the operating energy of 1.153 GeV. The curve is calculated 
based on Eq. 11 which takes into account the damping of 
the betatron oscillations. If the vertical betatron tune is 
lowered, then both intrinsic resonances could cause slight 
depolarization. With these tunes however the amount of 
depolarization is minimal. We also considered the energy 
spread of the injected beam and the effect of a nonzero 
chromaticity. The energy spread, which was taken to equal 
the energy acceptance of the ring, was determined not to 

448 
PAC 1993



6-v, Y 

_I I I I 
2.6 3.0 

ay 
3.4 

IWW 

Figure 3. The ratio of the final to injected beam polar- 
ization as a function of a7 calculated from Eq. 11. 

cause significant depolarization. The nonzero chromaticity 
shifts the 6 - v, resonance downwards only slightly. 

To compare the analysis with numerical simulation, 
we make the conservative approximation that the contri- 
butions from individual resources add coherently. Then 
summing over the contributions due to each resonance at 
a given ay gives, from Eq. (9) 

s, = (1 -c (K _ /$+ ,ei,21si’ (12) 
._ 

Eq. (12) was used in Fig. 4a to calculated the ratio of the 
final to the initial polarization as a function of ay. 

These results include tist order linear resonances only. 
To check the importance of higher order resonances and de- 
polarization due to spin diffusion, we compare the results 
to those obtained using SLIM5, which calculates the re- 
sulting equilibrium polarization; that is, the polarization 
one would observe after injecting unpolarized beam and 
allowing the beam to polarize due to spin flip radiation. 
The simulation using SLIM is shown in Fig. 4b. Shown in 
Fig. 4c is a simulation made with SMILE’, which includes 
nonlinear resonances. 

5. Conclusion 
Using the spinor formulation of the Thomas-BMT 

equation, we emphasized that the measurable polarization 
depends on the projection of the polarization vector onto 
the stable spin direction at injection. This direction de- 
pends both on the resonance strength and the nearness of 
the operating energy to the resonance. We then consid- 
ered the effects arising from synchrotron radiation. We ob- 
tained an expression for the final polarization taking into 
account the damping of the betatron oscillations. The so- 
lution was based on the realization that the polarization 
vector precessed adiabatically as the transverse distribu- 
tion was damped. We then integrated over an assumed 
Gaussian transverse particle density distribution and pre- 
dicted the final polarization at extraction. To test the 
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Egure 4. Comparison of ratio of final to%%cted po- 
larization as a function of ay obtained from anal&c 
calculations (4a), SLIM (4b), and SMILE (4~). 

effect of higher order resonances on the spin motion, we 
compared the predictions to numerical simulations under 
equilibrium conditions. 
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