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Abstract 

The general approach to the problem of the symplectic in- 
tegration of Hamilton’s equations, which is presented in 
paper [l] and which uses only the common properties of 
Lie groups, is developed to obtain the numerical tracking 
methods for both orbital and spin motions. The integra- 
tion step of these methods is an explicit canonical map. 
(Here we use the term “canonical” instead “symplectic” for 
the systems with the spin Poisson brackets.) Some meth- 
ods of such tape are realized in computer code VasiLIE [2]. 
With help of this code it is possible to study the dynam- 
ics of the polarization during acceleration. The numerical 
simulation of crossing the depolarizing resonances depend- 
ing on the different parameters was performed for a lattice 
under study for the TRIUMF KAON Factory Booster [3]. 
The effect of nonlinear elements is also discussed. 

I. INTRODUCTION 

The spin resonance crossing is the main process which does 
not allow efficiently to accelerate polarized proton beam 
to high energy. The influence of spin resonances can be so 
great that in the end we can obtain a completely depolar- 
ized beam. This depends on concrete conditions of a pas- 
sage through resonances. The behaviour of a semiclassic 
spin of a particle far from resonances is described well by a 
vector n’ and a spin tune v, introduced by Ya.S.Derbenev 
and A.M.Kondratenko [4]. For every given orbital trajec- 
tory a projection of a spin vector on the direction n’ is 
preserved and the projection on the transverse plane is ro- 
tated with a tune Y, (the correct mathematicaldefinition of 
n’ and an algorithm of its calculation with help of one turn 
Taylor map see in [5]). In general case in nonresonance 
situation it is possible to conserve the beam polarization 
only along the direction n’ because Z and a spin tune vt 
depend on the betatron and synchrotron oscillations. 

Let consider the situation of one isolated resonance 
crossing. In this case we have two directions n’ = n’l and 
n’ = n’z which describe the spin motion before and after 
resonance. If we know the angle between an image of n’l 

after resonance and riz, we can predict the value of the 
depolarization of the particle beam. For the first time the 
depolarization due to passage through a resonance was es- 
timated by M. Froissart and S. Stora [6]: 

Pz = PI (2 ezp(-x 1 WL 12/2cY) - 1) (1) 

This formula gives a small value of depolarization in cases 
of very slow or very fast passage of spin resonances. What 
will happen when we have the intermediate situation or 
cross one after another several near resonances? The nu- 
merical integration methods are a useful addition to an- 
alytical investigations of this problem. In this paper we 
present the numerical integration method, the integration 
step of which is an explicit canonical map. 

II. NUMERICAL INTEGRATION 

METHOD 

The classical spin-orbit equations of the motion in circular 
accelerators have the form of a Hamiltonian system if we 
use the Poisson bracket: 

tF(~,Q(Z3)=Fp,Qg-Fy.Q~+[FrxQjl.S (2) 

and the Hamiltonian: 

H = H,,b(l, T) + @(Z-, 7) s’ 

where z’ = (Z, S) and Z = (ri; pJ are canonical orbit vari- 
ables, ,? = (5’1, Ss, S3) is a classical spin vector, T is the 
generalized machine azimuth or the time (see details in 

[51). 
So we will use a general approach to the numerical inte- 

gration of Hamiltonian systems which is presented in pa- 
per [l] and which uses only the common properties of Lie 
groups and Poisson brackets. For simplicity one consider 
the case when the Hamiltonian does not depend on 7. Usu- 
ally the effect of the spin on an orbital motion is not taken 
into account. In this case we can obtain the solution of the 
system with the Hamiltonian ti .s’ in the evident form. It 
means that it is possible to reduce the initial problem to 
the problem of symplectic integration of an 
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Figure 3: 

orbital motion only. Using the Campbell-Baker-Hausdorff 
formula one can to introduce a new vector 

rij(E,h) = I3 + h. 81 + h2 iI72 + “’ 

so that for any given order k 

ezp(: -;Hora :). ezp(: 4&i 3:). erp(: -;Hors :) = 

= ezp(: -h(H,,~ + @ ‘3) :) + O(l h Ik) 

where h is the size of the integration step. 

(3) 

If we use the combination of some symplectic integra- 
tion method of order k for orbital motion [l] and an ev- 
ident formula for central Lie exponent in the left side of 
(3), we will obtain the numerical method of order k which 
preserves the Poisson bracket (2). Some methods of such 
tape are realized in computer code VasiLIE [2]. 

III. NUMERICAL INVESTIGATIONS OF 
SPIN RESONANCE CROSSING 

There are 6 intrinsic spin resonances in the acceleration 
region of a racetrack lattice under study for the TRIUMF 
KAON Factory Booster [3]. A part of them is in the inter- 
mediate region when a crossing speed is not very slow or 
very fast. In this part we present the results of numerical 
investigations of the resonance 7G = 2 -vu which is passed 
at the energy Es = 757 MeV. 

Fig.1 shows turn-by-turn evolution of three spin projec- 
tions during resonance crossing for a particle with 6p/p = 
0. These pictures were obtained with help of computer 
code V&LIE [2] and correspond to different speeds a in 
formula (1). 

The spin flip takes place with small depolarization for 
the crossing speed a u 2 x 10e4 (an upper part of Fig.1). 
It corresponds to a parameter I = (r 1 IQ 1’)/(2(~) N 0.6 
in formula (1). The bottom of Fig.1 shows the result of a 
fast resonance crossing with I N 0.01. The rest of pictures 
show the intermediate cases for I = 0.17 and 0.09. 

At a sine change of a momentum during acceleration which 
is proposed for the Booster lattice, I N 0.3. 

The effect of nonlinearity influence is considered for a 
resonance 7G = 2~. Without sextupoles this resonance 
is due to the edge magnetic fields and is weak. So this 
resonance is nonlinear we have taken a large emittance 
to see its effect more clearly. Fig.2 shows the resonance 
crossing in the Booster lattice with sextupoles and Fig.3 
without sextupoles. 
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