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We found that the perturbed spin tune due to the im- 
perfection resonance plays an important role in beam de- 
polarization at snake resonances. We also found that ezfen 
order snake resonances exist in the overlapping intrinsic 
and imperfection resonances. Due to the perturbed spin 
tune shift of imperfection resonances, each snake resonance 
splits into two. 

dratenko [3] proposed to use a local spin rotator, which ro- 
tates the spin vector 180’ about an axis in the horizontal 
plane. These spin rotators are called snakes. Using snakes 
in an accelerator, the spin tune of the particle can become 
4 and independent of energy. The resonance condition can 
be avoided. 

A BSTRA CT 

1 Introduction 

The spin equation of motion for a spin particle, governed 
by the magnetic interaction between the magnetic dipole 
moment of the particle and the static magnetic field in a 
sy-nchrotron, is given by the Thomas-BMT equation [l] , 
$$ = &;;” x [( 1 + Gr)I?l + (1 + G)I$], where I?A and 

0’1, are the transverse and longitudinal components of the 

magnetic fields with respect to the velocity vector, p. In a 
planar synchrotron, vertical magnetic fields are needed to 
guide the orbiting particle around a closed path. Thus the 
spin vector is precessing with respect to the vertical axis 
at a frequency Gyfo, where fo is the revolution frequency, 
C = f - 1 is the anomalous magnetic g-factor and y is the 
relativistic Lorentz factor. The quantity, Gy, representing 
the number of spin precessions per revolution, is called the 
spin tune. 

In a synchrotron, strong quadrupole fields are also 
needed to focus the beam to a small size. Those particles 
moving off-center vertically in quadrupoles experience hor- 
izontal fields, which will kick the spin vector away from the 
vertical axis. Since quadrupole magnets and the particle 
closed orbits are periodic in a circular accelerator and the 
betatron and the synchrotron motions are quasiperiodic, 
perturbing kicks to the spin vector can be decomposed 
into harmonics, li, given by Ii = n + mv, + !u, + kv,,, , 
where I-J=, V, and v,,,,, are respectively the vertical beta- 
tron, the horizontal betatron and the synchrotron tunes, 
and k, E, m, n are integers. The imperfection resonances, 
due t,o the vertical closed orbit errors, are located at inte- 
ger harmonics, Ii = n. The intrinsic resonances, due to 
the vertical betatron motion, are located at II’ = nP + L/,. 
where P is the superperiodicity of the accelerator. Other 
depolarizing resonances arise from linear or nonlinear be- 
tatron coupling, vertical dispersion, synchro-betatron cou- 
pling and random field errors. When the spin precession 
frequency is in phase with the harmonics of perturbing 
kicks, i.e. 0, = K, these spin perturbing kicks add up co- 
herently every turn around the ring. Therefore the beam 
can be depolarized 

To avoid a spin resonance condition, Derbenev and Kon- 

2 Snakes and Spin Motion 

Snakes are local spin rotators, which rotate particle spin by 
?r radians about a horizontal axis locally without perturb- 
ing particle orbits outside a snake region. A partial snake 
differs only in the amount of spin rotation angle, e.g. a 10% 
snake rotates spin by 0.1~ radians. Thus a snake is char- 
acterized by the amount of spzn rotalion angle, m, and the 
snake azzs angle, qts, with respect to e^l (radially outward 
direction). The spinor wave function at a snake will be 
transformed locally according to ‘I”(@) = e-i%‘, ‘Q(6’-), 
where 4 is spin rotation angle and li, = (cos d,, sin 4$, 0) 
denotes the snake axis with respect to radially outward di- 
rection, e^l. Q * depict azimuthal orbit rotation angles just 
before and after the snake. More specifically, at 6 = K, 
or the 100% snake, the spinor wave function can be trans- 
formed as, 

q(e+) = ,-a:% aqQ-) = T,(d,)I(e-), (1) 

where Ts($d) = -ifi, a’ is the spin transfer matrix for a 
100% snake. 

Let us consider a perfect circular accelerator with two 
snakes, -iol, -iuz, separated by 37 orbital angle apart. 
The one turn spin transfer matrix (OTM) is given by 

[-ia&-- iq=03[-ial]e-i%=“3 = iv3, 
(‘4 

Thus the spin tune, obtained from the trace of the one 
turn spin transfer matrix, is f and the stable spin closed 
orbit is vertical. Now we introduce a small constant local 
spin angular precessing kick, x, about an axis ?Q in the 
horizontal plane, the spin transfer matrix becomes, 

T, = e-i:rik dic3. 
(3) 

Because jik is in the horizontal plane, the evolution of the 
spin transfer matrix at the nth revolution becomes, 

if 77 = even 
if n = odd ’ (4) 

which means that the perturbed spin precessing kicks can- 
cel each other every two turns around the accelerator. 
Thus the snake is effective in correcting imperfection res- 
onances due to a localized constant spin perturbing kick. 
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Figure 1: The vertical polarization after passing through 
an intrinsic depolarization resonance with two snakes is 
plotted as a function of the vertical bet&on tune v,. 

Extending the model a step further, we assume that the 
precessing kick is different in each turn, the spin transfer 
matrix becomes, 

T(n) = fi T, = e -i:[C:=,(-l)“-“X~]A~.~ 
b31n. (5) 

In=1 

The vertical spin vector is given by, 
Sp) = 1 - 2sin2[iCm=,(-l)n-rraXm]. 

Now if the spin perturbation kicks are due to a betatron 
motion, these kicks are correlated by xrn = ~0 cos2mnv,, 
where V, is the fractional part ofthe vertical betatron tune. 
When the vertical bet&on tune is V, = f, each kick adds 
up coherently. The spin vector will precess around the tih 
axis at a precessing tune of E, i.e. it takes 2 turns to 
complete one revolution around the fik axis. 

3 Odd order snake resonances 

Subsequent studies show that when the resonance strength 
is large, new spin depolarizing resonances occur at some 
fractional betatron tunes. These resonances are called 
snake TESO~~~C~S [4] Snake resonances, due to coherent 
higher order spin perturbing kicks, are located at 

v, + dK = integer, e= 1,3,5,7;.., (6) 

where V, is t,he spin tune and I< is the spin depolarizing 
resonant harmonic. For V, = i, we expect that snake res- 
onances occur at the following fractional betatron tunes, 
yz=i,;.i 13 1 w?m vie 2 ...,wherethelow- 1 10’ 10’ 10’ 10’ 14’ 14’ 
est order snake resonance has been observed [5] Other 
higher order snake resonances have been identified in nu- 
merical simulation (Fig. 1). It is interesting to note that 
the numerical simulations show no apparent even order 
snake resonances at 

vb + Ui = integer, !=2,4,6,8;... (7) 

Several reasons for the nonexistence of even order snake 
resonances were given in the past [4,6], which has never 
been tested in the case of overlapping resonances. 

Overlapping resonances are important in high energy ac- 
celerators. [6,7] An important imperfection resonance oc- 
cur usually at the integer nearest to the dominant intrinsic 
resonance. Therfore overlapping intrinsic and imperfection 
resonances constitute the most important problem in the 
spin dynamics during polarized proton acceleration. 

4 Even Order Snake Resonances 

To understand the effect of imperfection resonances on the 
spin motion, we reduce intrinsic resonance strength in our 
calculation to tint = 0.137, where only low order snake res- 
onances at Y, = l/2, l/6. 5/6 are important. When an inI- 
perfection resonance at firnp = 0.13 is included, we found 
that even order snake resonances at V, = 3/4, 5/8, 7/S,. 
appear. Furthermore, all snake resonances split into dou- 
ble peaks shown in Fig. 2. The distance of these two peaks 
increases with the strength of the imperfection resonance. 
Note that the even order snake resonance becomes more 
important than the odd order snake resonance and the 
odd order snake resonance is not affected by the imper- 
fection resonance. Note also that double peaks occur for 
each snake resonance. The feature of double peaks can 
be understood easily knowing that the imperfection reso- 
nance generates a perturbed spin tune shift. The snake 
resonance condition becomes 

f + AQJ * Eu, = integer, k = integer, (8) 

where AQs is the perturbed spin tune shift from the irn- 
perfection resonance given by 

lAQSI x b arcsin[sin2 y]- (9) 

where the actual magnitude and sign of the spin tune shift 
depend on the closed orbit of the circular accelerator. The 
distance of splitting becomes smaller at higher order snake 
resonances (Fig. (2)) with AU, = +=)A&,. The depolariza- 
tion line shape of these double peak reflects the important 
effect of perturbed spin tune shift on the snake resonances 
at the maximum spin tune shift. 

To understand the essential mechanism of the even order 

snake resonances in the presence of overlapping spin reso- 
nances, we consider the model of the spin transfer matrix. 
The OTM of the overlapping intrinsic and imperfection 
resonances can be expressed as 

? = e-i$-o1 T(kl + ‘Ji7, &I), (10) 

where ~(0, +2x, 6’0) is the OTM without imperfection res- 
onance and we have assumed a small local spin precessing 
kick, y, about the 21 axis. The resonance strength of the 
imperfection resonance is given by timp = ,~/2a at all inte- 
ger harmonics. Due to the imperfection resonance, the off- 
diagonal matrix elements now contain a term oscillating at 
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Figure 2: Vertical polarization after passing through an 
overlapping intrinsic and imperfection resonances with two 
snakes 

two times the betatron frequency with an amplitude pro- 
portional to b 2 $. Thus the snake resonance condition sm 
is given by v, f 21< = integer. Performing similar higher 
order analysis, one obtain all even order snake resonances. 

5 Critical Resonance Strength 

Let us define the critical resonance strength as the reso- 
nance strength that the polarization is preserved to within 
1.5% of full polarization. Fig. 3 shows the critical res- 
onance strength for the odd and even order snake reso- 
nances at the acceleration rate of 5 MeV/c per revolution. 
Depending on the acceleration rate, the critical resonacne 
strength can be described by the following formula fitted 
to numerical simulation results, 

%,5/6 = In[l.12(-$-)” Oz4], 

fe,21/26 = ln[l.64( f )” Oz4], 

k,13/16 = ln[1.50(~)“~0”0], 

where the reference acceleration rate is $0 = 5 MeV/c per 
revolution. Here we study only K = i, g, g snake res- 
onances with the assumption that the betatron tune are 
chosen to lie in between 2 and g for example for RHIC at 
BKL. 

6 Conclusions 

We found that snake resonances, located at v,+!Ic = inte- 
ger, are the major source of depolarization in synchrotrons 
with snakes, where the integer 1 is called the order of snake 
resonance, K is the spin resonance harmonics. When im- 
perfection resonances are overlapping with intrinsic res- 
onances, even order snake resonances appear. The per- 
turbed spin tune, arising from imperfection resonances, 
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Figure 3: The critical snake resonance strength vs the or- 
der of snake resonance is plotted for & = 5 MeV/c per 
turn on the left. The critical resonance strength vs the ac- 
celeration rate is plotted in the middle part and the snake 
resonance strength for the even order resonance as a func- 
tion of the imperfection resonance is shown on the right 

plays an essential role in the depolarization mechanism, it 
causes each snake resonance to split into two resonances. 
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