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Abstract: Beyond typical, open-loop or feedback use, 
fast, turn-by-turn bunch monitors provide recursive data 
that determines system dimensionality d and K-entropy 
whose time fluctuations provide useful diagnostic tools. 
For injection and extraction, one can study variations in 
the dimensionality of the attractor with matching, jitter, 
current and tunes. Comparison to dynamical models then 
helps to optimize control. Experimental and theoretical 
examples and their signatures are discussed e.g. the evo- 
lution of the distribution function after injection is studied 
as a solution of Liouville’s equation. 

I. Introduction 

Optimal injection and extraction in storage rings can 
be approached in several ways. We can try to understand 
the problem with an explicit Hamiltonian or in a purely 
heuristic way using feedback/forward or, as argued earlier, 
with a closed system whose structure is based on dynami- 
cal models [l]. Since chaotic dynamics are controllable [2] 
with data of sufficient accuracy and sampling bandwidth, 
we study the information content in time series, how it 
varies with time and how we can control and use it. 

II. Tests of data 

For N equi-spaced samples (Z<(iT) : i = 1’. .N)f, we 
can write the correlation function as: 

N-n+1 

c(P) = (N -K + 1)2 j>i=l 
C O(P-l~i---jl) (1) 

with p the correlation length, 0 the Heaviside function 
and R the number of variables assumed to span the prob- 
lem [3]. d is the limit of dLogC(p)/dLogpwith nmnz>d>D 
where D counts the number of degrees of freedom. 
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Fig. 1: Dependence of correlation integral on size. 

Fig. 1 shows the analysis for Ax from Fig. 3. All 
curves in Fig. 3 give D sz 1, including 1000 particle track- 
ing. The collective motion is well represented by a single 
particle with 1D. Two constraints on decimated ‘data’ are 
to avoid obvious correlations e.g. n > 5 in Fig’s, l&3 and 
to have enough data to unfold deterministic and stochastic 
effects (large d). For contrast, Fig. 2 shows the expected 
result for 1000 random points. For C(p) < 1, all curves 
in Fig. 1 are parallel whereas none are in Fig. 2. 

III. Analytic model for injection 

Even when one reduces particle losses along a closed 
orbit at injection by adjusting the transverse tunes to 
avoid resonances, injection may still not be optimal due to 
the cumulative effect of nonlinear fields on the beam over 
many turns. In terms of the lowest order moments, one 
observes decoherence in the center-of-mass motion (z)* 
and fiiamentation of the phase space e.g. growth in (z’)~. 
Examples are given below: first from Moshammer’s ana- 
lytic model [4], then tracking and finally from measured 
SLC data. 
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Fig. 2: Correlation data for 1000 random turns. 

A. Assumpttons 

1. One can replace the Hamiltonian of single particle 
motion H(+,p, s) by an Hamiltonian, averaged over 
the fast evolving variables 

!?(I) = wg -&$ 

*=I 
(2) 

The quantity wg denotes the revolution frequency 
times the tune. The linear motion is described with 
/la = 1 and N = 1 and ~1 contains first order oc- 
tupole plus second order sextupole contributions etc. 

Once the Hamiltonian is transformed into an integrable 
Hamiltonian, the equation of motion and thus the time 

* Work supported by DOE contract DE-AC03-76SF00515. evolution of the phase space distribution is determinable. 
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2. The beam distribution at injection is assumed Gaus- 
sian. 

The only requirement is that the initial distribution is well 
approximated by a positive definite, but not necessarily 
smooth, function of the phase space variables. 

3. Normal coordinates (E,~I), related to the transverse 
betatron coordinates (z, , p,) are used: 

( = 5 , 7 = ax'&'p' ) q + it = Jzle'@ 

Their relation to action-angle variablesis given by the 
transformation from Cartesian to polar coordinates. 

The corresponding distribution function in (T, 6) at 1 = 0 
is: 

*=& exp IO 
-~[JIcas(n) - t/zcos(n,)]” 

-e[Asin(n) - &sin(fic)]‘) (3) 
with 

I 
1 

Q=Cp- dt ~8(I)/~I - 4 no = do -4 , 
0 

do = arctan(Eo/w) , 

where the center-of-mass at injection is given by the co- 
ordinates Q,& and c2s denotes the injected emittance. 
The coefficients b and c describe the injected beam ellipse 
in the lattice of the storage ring. They are composed of 
the Twiss parameters associated with the injection point 
in the storage ring (0, p) and the Twiss parameters that 
describe the injected beam ellipse aa, pb. The distribution 
function in Eq. (3) will be an exact solution of Liouville’s 
equation. From Ref. [4] we have 

b=;($+;+;[aa-$o]2) 
and c, 4 are given by 

Notice that: c2 = b2 - 1. For b = 1, the initial dis- 
tribution is described in phase space by circular contours 
centered around lo,&. In this case the beam is said to 
be matched to the lattice. The parameter b is known as 
the P-mismatch parameter which quantifies the increase 
of effective beam size after filamentation. 

B. First Moments 

It is possible to obtain a closed expression for the first 
and second moments if we limit N = 2 for the linear and 
quadratic terms in Eq. (2). From Ref. [4], the result for 
the first moment from @ in Eq. (3) is: 

(7+iO = II Vmexp(4) dIdq5 

= Ad210 (b2 -Q 

/cZ(l- t2)3/2 
lolb+cco5(2no)]/f,oci(wof+d+no) 

x 1 - *e-2iAo) exp (A - AZ cos(2i2s)) , 
( 

(4) 

with 

K = b - i(wop,tc,o) , z = C/K , x = A210 
K(1 - 22)C,O 

and 

tan(tis) = 
b-c 
b+c tan(Qc), A = Jb2 + c* + 2cbcos(2Qo) 

Using the definitions of A and fit below Eq. (3) it 
is straightforward to show that Eq. (4) fulfills the initial 
condition (r] + it),,, = &exp(i&). Since ]K] increases 
with time, the asymptotic value of the first moment tends 
to zero: (r~+ it)+, = 0. In this context one talks about 
the decoherence of the center-of-mass motion. This is 
illustrated in Fig. 3. One thousand particles were tracked 
over 2000 revolutions in the lattice of the SLC damping 
ring which contains 72 permanent sextupoles. The stars 
in Fig. 3 describe the analytic solution based on Eq. (4) 
whereas the lighter solid line refers to tracking. There is 
a small but stable phase error. 

Equation (4) reduces considerably if we assume a 
matched beam at injection with b = 1. In this case Eq. 
(4) describes the decoherence of an initial Gaussian beam 
that has been deflected from the reference orbit. 
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Fig. 3: Center-of-mass motion after injection. 
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Fig. 4: Correlation data for a turn-by-turn BPM. 

C. Two or more degrees of freedom 

With betatron coupling or chromaticity, the series 
(z)r reflects a Hamiltonian with D > 2. Still it is pos- 
sible to derive analytic solutions for the center-of-mass 
motion after injection but the number of parameters that 
have to be determined from data increases considerably. 
One way to overcome this is to filter the data in the fre- 
quency domain and reduce the 2 or 3 degrees to one. The 
discussion here is limited to tests of calculations and the 
available data types. 

D. Higher dimensionalily of di@ml ‘data types 

An analysis of (r)t from 3D tracking with DESPOT 
for the first 1000 turns implied a value consistent with 
D = 1.5 as though the different degrees of freedom were 
nearly uncoupled. The result for the energy was especially 
clean with D = 1. At 1000 turns, coherent oscillations 
from injection errors in position and energy had nearly 
damped whereas at 500 turns D w 2 for (z)t. 

A BPM monitor [5] that gives turn-by-turn data for 
an FFT has D 2 2 as implied above. Fig. 4 shows an 
example for the first 1000 turns after injection when there 
is no betatron coupling. For a synchrotron light monitor 
(SLM) we expect a similar or higher D. 

Fig’s, 5&6 show some results [B] for a damped beam 
that is first perturbed by an extraction kicker and then 
again by an injection kicker near turn 130. The effects in x 
are more emphatic and a good example of a matched beam 
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Fig. 5: (y) vs turns for kicked data from a SLM. 
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Fig. 6: Correlation data for a ‘turn-by-turn’ SLM. 

with b = 1 that decoheres and filaments when deflected. 
Analysis of the 500 turns for x give a result similar to 
Fig. 4 with D % 2, but the y data look totally different 
and appear noisy so that one expects a higher phase space 
dimensionality. The result for all 500 turns is shown in 
Fig. 6. The D = 1 trend at the larger correlation lengths 
disappears when one analyzes only the turns for N > 130 
which may indicate coupling from the extraction kicker. 

IV. Conclusions 

Dimensional analysis of real data show insignificant 
noise [7]. Decimating data, to filter, compress or match 
sampling capacity should extend the applicability. More 
SLM data for different orbits could study coupling from 
the kickers. The analysis is simple for n < 10 so it should 
be interesting for many accelerator studies such as nonlin- 
ear resonances or coupling in multi-bunch or flat beams 
(e.g. from the kickers) as well as the parameter depen- 
dence of stochastic effects in the beam-beam interaction 
or in long-term tracking. 
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