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Abstract 

A model of a plasma ion source has been developed that 
approximates the system of Poisson and Boltzman-Vlasov 
equations normally used to describe ion sources by an 
external electric field, a collective electric field due to the 
charge column, and the starting boundary conditions. The 
equations of this model can be used directly in the Lorentz 
force equation to calculate trajectories without iteration. 

INTRODUCTION 

direction parallel to the axis with a current density Jo. These 
positive ions are neutralized within the plasma by a Boltzman 
distribution of electrons with an electron temperature 
typically of 2 to 10 eV. As the ions approach the plasma 
electrode, a sheath forms at the edge of the plasma, which has 
the effect of reflecting the electrons and accelerating the 
positive ions out of the plasma. Usually, the width of the 
sheath is approximately 0.1 to 0.001 mm with an electric 
field on the order of a MVlm. After being extracted from the 
sheath the ions are further accelerated by the electric field 
from the extraction electrode. 

The physics of a plasma ion-source is usually described 
in terms of a system of Poisson and Boltzman-Vlasov 
equations for each of the ion species involvedl. This system 
is usually solved numerically tier various levels of 
approximation are made to make the problem tractable. In 
general, this procedure gives reasonable agreement with 
experiment, especially for positive ion codes. The problem, 
however. is that the effects of various approximations and/or 
source components on source performance are difficult to 
separate and thus optimization of source performance is 
difficult. 
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In this paper, we develop a model of an ion source that 
consists of an external electric field due primarily to the 
source geometry, a collective electric field due to the charge 
column, and a set of initial boundary conditions on the ions 
as they are injected into the external and collective fields. 
Since the charge column is not infinitely Ion 
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axial component lo the collective electric field Because this 
model separates out the external and collective fields, it 
should be relatively easy to trace particle trajectories or 
incorporate the model into codes like TRACE2D3. In this 
paper. we will discuss the key features and assumptions of the 
model. We will provide a more detailed comparison of the 
model predictions with those of standard source codes such as 
SNOW4 in a later paper. 

Figure 1. Definition of Source Geometry 

The Poisson and Boltzman-Vlasov equations are solyed 
iteratively by calculating an initial potential distribution, ray- 
tracing the ion trajectories to obtain a new charge density, 
and then solving the Poisson equation until consistency is 
achieved. This final potential is then used to ray-trace the 
ions to obtain current densities and two-dimensional phase 
space distributions at the location ZE. 

OVERVIEW OF A TYPICAL POSITIVE-ION 
SOURCE MODEL 

Figure 1 shows the simple positive-ion source geometry 
lo be modeled. The plasma to extractor electrode distance D 
is 8 mm, the aperture radius is 2.5 mm, and the sheath to 
plasma electrode distance L varies between 1 and 4 mm, 
Note that the usual hole in the extraction electrode has been 
eliminated for simplicity. 

The external field is determined by solving Laplace’s 
equation for the source geometry using a code such as 
SIMION or by using the technique of aperture superposition5. 
The problem in determining the external fields arises from 
the fact that the this field depends on the unknown position 
and shape of the sheath formed in extracting the plasma. 

In source codes like SNOW, the initial ion beam is 
injected into the plasma with an energy of 5 to 10 eV in a 

In our model we approach this problem by assuming 
that the position of the sheath has the dominant effect on 
determining the external fields and that the shape of the 
sheath is less important. The top half of Fig. 2 shows 
calculation& of the phase-space distribution from SNOW for 
a range of current densities using the geometry of Fig. 1. The 
bottom half shows phase-space distributions calculated using 
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external fields for a planar plate located at various values of L 
relative to the plasma electrode. The key observation from 
these calculations is that the shape of the phase-space 
distributions does not appear to be strongly dependent on the 
space-charge forces, and that the current density Jo is closely 
related to the sheath position. 
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Figure 2. Phase-Space Distributions 

The preceding observations suggest that a good first 
approximation in calculating the external fields is to simply 
replace the sheath by a planar plate and to choose the position 
of the plate to provide the desired current density, Using a 
sheath shape that is not planar does not complicate the 
analytical determination of the external fields. The 
complication is in devising a method to determine the sheath 
shape. 

The key is to determine the functional relationship 
between Jo and the plate position without solving the 
Poisson-Boltzman equations. We propose that this 
relationship can be determined by requiring that the axial 
electric field due to the charge column be equal to the 

negative of the Laplacian electric field when the sheath is 
replaced by a conducting surface. Figure 3 shows a plot of 
the current density versus sheath-to-plasma electrode distance 
L. The solid line shows the sheath position (5eV 
equipotential) from the SNOW calculation, The open 
symbols show the current densities required to match the 
Laplacian and column electric fields at a particular L using a 
planar emission electrode. The column electric fields were 
calculated using the formulas for a column of charge of 
constant radius a as described in the following section, The 
data suggest that the exact current density for a particular L 
is not a sensitive function of a. The use of the experimental 
aperture size of 2.5 mm appears to be a good initial choice to 
reproduce the SNOW data The solid symbols correspond to 
a concave emission electrode and appear to give a better lit to 
the data over the range of L. The problem in concave 
calculations is in determining the radius of curvature of the 
emission electrode. 
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Figure 3. Current Density Versus Sheath Position 

BOUNDARY CONDITIONS 

One of the most uncertain features of this model is the 
boundary conditions to use at the emission electrode. Since 
the sheath region is relatively thin and since the sheath shape 
is approximately planar, it would not be unreasonable to 
expect that the ions would not be significantly bent in the 
sheath region and that the amount of energy gain would be 
limited. Thus a first approximation is simply to assume that 
the ions have the same direction and energy at the sheath as 
at the insertion plane. Note, however, that if the ions are not 
emerging perpendicular to the emission surface, then the 
energy of the emitted ions can have a significant effect on the 
resulting beam optics. 
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ELECTRIC FIELD FROM A COLUMN OF 
CHARGE 

The potential due to a distribution of space charge is 
given by Kirstein et. al’. This potential vanishes at z = 0, but 
not at zD. If we add a potential that is a linear function of z, 
and that varies from 0 to the negative of Kirstein’s potential 
at zD, then it will also satisfy the requirement of zero 
potential at the end of the column. Differentiating this 
modified potential gives the space charge field. 

Ez(oJ)= T& dp(z’) p$$ - Jg&jT 1 [ * 1 dz’ 

where a is the column radius and zo is its length. In this 
equation we have assumed the charge density is uniform in 
the radial direction and a is constant, 

We can use the above expression to obtain the radial and 
axial field components off the axis, using the paraxial 
approximation: 

(2) 

@r,z)= ~~(o,~)-~[$(~~(o,~))-ad)/ (3) 
0 

Inserting the axial space charge field (eq. (1)) into e& (2) and 
(3) yields the entire space charge field in the paraxial 
approximation., provided the charge density is known. 

The charge density is related to the ion beam current 
density by 

p(y)=% ‘0 
9x&T&q 

(4) 

where TO is the ions’ initial kinetic energy, 

x = (4 /9)&u ,/K, JO is the beam current density, and 
4 is the total potential (solution of Poisson’s equation) on axis, 
We approximate this potential with the space charge limited 
planar diode potential given by 

(5) 

Now we can relate the sheath position to the beam current 
density. Since the sheath is an emitting surface, the total 
field (applied plus space charge) must vanish at z = 0. The 
space charge field is obtained from eq. (1). 

-‘(~~-~~)}h’ (6) 
2zD 

Equating this field to the negative of the field resulting from 
Laplace’s equation, using eqs. (4) and (5), gives the beam 
current density as a function of the applied voltages, the 
sheath location, and the extraction geometry. 

DISCUSSION 

Using the assumptions and formulas presented in this 
paper, it is relatively easy to calculate ion trajectories from an 
ion source without having to solve iteratively a complicated 
system of Poisson and Boltzman-Vlasov equations, In 
addition the physics of the problem is more readily apparent. 
We are currently in the process of developing a code using 
the model described in this paper to calculate phase-space 
distributions for comparison with SNOW calculations. It is 
expected that by varying the various parameters and 
assumptions in our model to obtain agreement with the 
SNOW data, we will obtain additional information on which 
source parameters are limiting source performance. 
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