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Third-Order Bending Magnet Optics for Cartesian Coordinates

Andreev V.V., Yudin |.P,
Joint Institute for the Nuclear Research, Dubna, 141980, Russla

A thorough analisys of the charged particles dynamics on the
basis of the matrix formalism up to the 3-rd order incluisve
for the sector dipole magnets is usually held in a curvelinear
coordinate system. In those cases, whenever the dipole is not
a sectoral one, transformation to the curvelinear coordinates,
associated with the trajectory of the central particle of the
beam, doesn’t proove itself, use of the difficulty of the
physical interpretation of the obtained results.That makes
necessary to analyse the dynamics of the beam in the bending
magnet in the cartesian (rectangular) coordinate system.

1. Motion Equation in the Rectangular (Cartesian)
Coordinates . Linear Approximation
It is well known that the motion of the charged particle with

%e charge ¢ and mass m in a magnetic field with the induction
is determined by the Lorentz force:

£ (ym¥)=—g/c- WX BI,

where V' - speed of a particle, y=(1—3 l/z,ﬂ=v/c, c - light
speed. We examine the rectangular (Cartesian) coordinate
system XYZ with the axis OZ, directing stright alone the
motionof a particle. In the linear approximation the magnetic
field =£0, B, 0) we would obtain the non-linear

differential equation of the plane trajectory x(2)
x'’ =—p%-(1 +x'2)%, (1.2)

where 1/pp=h=¢By/(ypc) - the curvature of the trajectory,
p = mv - the particle momentum. The analytic solution of Eq.

(1.2) with the initial conditions of x(0) =xp,x'(0) =X,

is well knownm
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he determination of the higher order optics for the Eq. (1.1)
in Cartesian coordinates is more complicated. It is easier to
determine the higher than the first order optics in curvelinear
coordinate system with furter transformation back to XYZ.
Such transformation is adequally described by changing of
the 2-d and 3-rd order abberation coeffs only.

Let X0 =(xp, X0, ¥, o 1, 8 ) be the initial conditions
vector. X(z) we would perform in the form of the

decomposition on the initial parameters X% (i =1, 2)

X,(z)=R,(z,X)4I-§u§jT‘m(z)X°,X° £t
+I ixé § U)X X0

==k
The index "¢” shows that the coeffs were obtained in
rectangular (C§1esian) coordinate system. With #3,..,6
functions R(z, X }are linear on X' and correspond with the

general type (TRANSPORT-type). We define the
decomposition coeffs (1.4) following the formalism 2

(1.4)
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2. The 3-rd Order Beam Optics of a Dipole Magnet
The solution of the Eq. (1.1} in the curvelinear coordinates
(especially in its linear approximation) is well known. That’s
why we would review general parts briefly.

The right-oriented curvglinear coordinate system XYS is
chosen 5o, that the ort § should be aimed on a tangent to
some, chosen before, respondent to the predifined specific
initial conditions, of the arbitrary (relative) trajectory.
Because of the well known symmetry relation of the scalar
magnet potential, in relation to the mid-plane, a particle, that
starts in that plane won't leave it,

o(x 3, 5) = —P(x, =) 5) Q2.1
We would decompose Eq. (1.1). To obtain the abberation

cocffs of the decomposition (1.4), it is necessary to carry out
the following procedures:

1. Decompose Bi S) close to the arbitrary trajectory,
taking ig?o aocgﬁny’th; symmetry relation (21?1). jectory

2. Decompose Eq. (1.1) up to the necessary order,

3. Carry out the substitution of (1.3) into the obtained
equation.

4. Generate the qifferencial equations, by equating the coeffs
of the identical members.

5. Find out thg linear independent solutions of the obtained

uations, Green function, afier what integrate ij order

after order, with the right parts of the mentioned above
equations.

2.1 Decomposition of the B(x,y,s) Field.

To decompose the B(x, ¥, §) we would use the Maxwell
equation and the symmetry relation.

We rewrite the scalar potential in the form, correspondent
with Eq. (2.1). Toobtain the recurrent equations between the
coeffs in - decomposition we would use the Laplas equation.
Further by identifying the decomposition coeffs with a well
known decomposition of the central field By(x, 0, 5), we
wuold perform those coeffs in terms of the valueless coeffs of
the so called "multiplicative force” k;(s), k2(s) A 43(s)

By(x, 0, $)=B,(0, 0, 5)- [1—ki hx+ky h*x*+k3 1 £ +...],
k=— Ll/ hBy 0B,/0x |x =y =0 (quadrupole)

ky = [1/2h%B, ?B,/0x* |y = =0 (sextupole}, (2.1.1)
k; = [1/6R%B, #B,/ax | =y =0 (octupole).

hen the decomposition of the field components up to the
3-rd order are the following:

By(x, 3, 8) =poc/q [—h2k y+2 WBhkxy+3nsty+
+ (~Hks — h%,/3 + 200K /3 + R /6 + ' /34
+hi k/3—h4k /6 +R2/6+h1/3)y +..1,
By(x y,8)=pc/qg [ h=h hkyx+h ka2 +htky 3+
+ (=Pl +r /2 —h"/2) ¥ + (=3 ks—hky +
FRRH K 2K /20 Yy B Ry —hky /2R Y 2+

+AH xR+ ],

By(% ¥, 8) =poc/g (W' y+ (=P kt—2 h b’ ky —hA') xy +
+(=BK/I-R K g+ B K6+ IR k/2) P+
P k' +30%h Iy ARk F2R2R Ky AP Py 2.1.2)
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2.2 Decomposition of the Motion Equation,.

The result form of the motion equation in the X- and Y-plane
is the following

A= (1=k)hx=h0 —(1 =2k +i)) k3% + 12X +
+(2-k)R2x0+hx"2/2+ (0" - (k —k)) 2 +
+HYY ~hyY2—h02%+ (k) —2ky —k3) h* 3 —
—hH2x + (1 — 2k +kp) B3%%0 — (2 — 2 &y /3) K2xx'2—
—HY2+ k5 B2+ R B +HY 200K +R2 K —
—3K (katks)x P ~(hk'y +20 k) hxyy +
+Rhkxy2/2—(2—k)RxP+3hx26~
—Phgx'y — (K =Bk +28 %) 2072 —n'pd +
+hy?*6/2 +h09), (2.2.1)
V' + Pl y=2ky—k)Pxy+h'xy—H X y+hx ¥+
+ 1ky y O — (k= 4ka— k3 ey —h B'X2yY + (2K Ky +
+ hkll) hxx’y—( 2 —kl) hzxx'y+2(k1 “‘kz) haxyd e
—Rhx/2+R X y0+hX YO+ (hH /3 +42 -
—(H/6 ~nh'/3—h/3)k ++200'K | +H2K' /6 —
—Hk3) Y ~3h ky Y2 Rk O ... (22D
2.3 The Differencial Equations of the Matrix Flements.
The further algorithm of soluting the Egs. (2.2.1)-(2.2.2) is

evident. To determine the linear independent solutions we
examine the linear parts of those equations:

X' —(1=k)r?x=h0,
y' +k A?2y=0.
Each of the mentioned above equations has at least two linear
independent solutions. The general solution of the equations,
as it is well known, is the linear combination of the linear
independent solutions with the arbitrary coeffs. Besides all
the equation for the determination of the xgs) with the right
part has also a private solution, that is one of the components
of the general one. Let’s define the most general form of the
mentioned solutions in t}_le bending plane as:
1. Sine-like function s,(8):$,0) =0, s, (0)=1,0 =0.
2. Cosine-like function c,(8) : ¢ (0)=1, ¢ (0)=1,8=0.
3.Dispersion function d,(s) : d,(0) =0, &, (0) =0, =1.
4. Sine-like function 5,(s) : 5,(0) =0, §',(0) = 1,0 =0.
5. Cosine-like function ¢(8) : ¢,(0)=1, ¢ (0)=1,0=0.
Those functions define the so-called characteristic rays of the
arbitary magnetic system and all of it’s abberation coeffs.

The common solutions of the Eq. (2.3.1) with the initial
conditions (ch. 1) is the following:

2($) = c(8) %0 + 55(8) X' + dx(8)0,
X8) = () 3 +5,(5) Vo
That common form of the generated solutions makes evident

that the Green function -G(s, §) = 5(5) ((§) — (s) s(§), and
the private solution of the nongomogenius equation

q'" + &% ¢ = f: should be generated by means of the integral

qg= f; G(s, &) AE) d&. 2.3.3)

2.4 Differencial Equations of the Abberation Coeffs.

The abberation coeffs of the matrices Ry(s), Tyu(s), Ud(s)
are the solutions of the nonhomogenius garmonic oscillation
differential equations of the Eq. (2.3.3) form with the null
initial conditions. We would state that the right parts of the
equations for obtaining the elements Ty - are the square

2.3.D

(2.3.2)

forms of the 1-st order coeffs. The driving forces of the 3-rd
order coeffs Uy (E) have a more complicated form. We notice

that the "angle” elements of the matrix (#=2,4) are calculated
by differentiating on s of the "coordinate” elements (i=4,3).

3. Linear Approximation

agnetic field of the "pure” dipole
=B(0, By, 0), A(s) = 1/py = const, ky =k, =k3 =0.

Sx =po sin s/Py , ¢y =cos s/pyp,
— — (3.0
Sy=y,cp = 1.
Green functions on projections (§ = §)
3.2

Gy(S’S) =S5 “5'
Dispersional function dy (s} =pp (1 — cx(5)).
The non-zero matrix elements R
Ryt =cx, Rig =55 Rig =Py (1 —c), Ry = "Sx/Pﬁ,
Ry2 =cx Ra6 =5x/Po, R33 =1, R3q =5, Ryy =1,

Rs1 =sc/po, Rz =po (1 —¢z), Rss =1, Rsg =5 — s,
Rge =1.

{ Ge(s, 8) =py sin((s — §)/po)

4. Nonlinear Abberation Coeffs

The non-zero coeffs of the 2-d order:

Ty =~ —c2)/2p, Tyyz =s cx/Po, Ti16 = 3,
Tir =Py Sx (1 —~¢ceh T126 =3xd —Cxh

Traa =—py (1 —cy), Tigs =~ 52/ 200, T314 = $x/ Pos
T324 =Pp5 (1 —¢) T3a5 =5 — 5y

The 3-rd order:

Ui =c3h*/8 — e, h4/8 + S R2/8 — 3 h2/4 + ¢, K18,
U1112 =C§-h4 Sx/g +C§h2 S‘X/g "'Czﬁhz Sx/s,

Upite =h3 sy 5/2 —hsys/2— 11 ¢ b5 s4/8 — b5 s4/2 +
+ st/ 2 v e, B35t +5 e A5 528 — 2R3 512 +

R s+ hs 2+ S/ A+ A2 — EhA o b4,
U2y == h2s,s/4 =3 2 h2s,/8 —3 ¢4 5,/8 — 3 5,/8 —
=G sy +35/2 =3 R/B + e, h/8 — /8 +3/3 +
+c—11¢,/8,

Unizs =—cxhs/2+cys/2h +cE B3 s, /4 + A hs /4~
~cts/4h — 25, /4n,

Ui14s ==hls 82/ 4+ hls.s/24 cys/4— s,/4+ c2/2— 172,
Uyies = = h¥s;s/2 +5, 5/2 + cpht s+ hisd — o, n2s4 —
~c h T2+ + 3 252/ e B2 522 —2 B2 st —
—s2/2—cd+ 2,

Uz =ces/4 + c%hzsx/4 +cf, 5/4 =5,/ "'36‘;/8}12 +
+53/4n — 2/h? + ¢, /8RE —3 3/8 + 3 ¢,/8,

Uigzs =hsys/4+3cEhs/8+3chs/8h+c2s,/8h—
—Cy S/ h+ 5/ 2h +c3h/8 —c  h/8 + 3/8h — 3/ 2h —
~&/2h+17 c,/8h,

Uiz4a =55 52/4 —cy s/4R2 — c,5/2 + 5,/ 4h2 + c,5,/2 +
+ ¢, /B2 — 1/K2,

Ulaas =Cx/2h - 6;2‘-/2’1, U1666 =( 1 _C’E)/Zh,

Usitg =—h*s2/4 +c ks s/4 + R s, s +hts/4 —
~Cehts,/4—hls,,

Usizg =RESS/12 +52/4 —csys/4 —2 s s — 2 s/4 +
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+5s/4+s,+c2/2+2¢,—5/2,
Usias =hs2/4 —c hs,s/4—=3hs/4+5s/2n+
X hs /A —c, 8/ Tk,

Uspas = —53/12 + c3 s/4R% — s/4n% —s/2 + oy 5,/2 +
+ 2722 —2 ¢, /ht +3/282,

Uspag = —h s2/4 ~ 52/4h + ¢y 55 s/4h + 5/ h — s,/ h —
—2/4h —c,/h+5/8h, Usyqs = —s5,/2 —5/2

Nine elements T'sj; and nineteen elements Uy are not listed.

5. The Cartesian Coordinates

To gain the physically trustworthy results it is necessary to
transform the data to the rectangular (Cartesian) coordinate
system XYZ. We would agree on the following designations:
X =x,x=d/dz=x"/(1 +hx), 3=y,
=dv/dz =1/ — — G0
xg=dy/dz=y/(1+hx),xs=1,xg
i1 is important to notice that results obtained in different

coordmate systems differ only with the non-linear members.
It won’t be difficult to obtain the Cartesian elements T and

Ujjxgof the matrix, having marked them with the "¢" Here we

chscuss only those elements that differ from one system to
another,

T2 =Tuz2thsy, T =Ty —he s,

T2 =Ta12+hs's —h(cxs'x—c'y50),s

—h (Cx d'x +C’x dx) y TS0 =T "hs.xs’xa
=Tye—h(sxd's +5dy),

T°16 =T216
T2

TC266 =Ta266 —hdyd'x, T34 =T314 T hsy,

T3 =Taz—heyc'y, To414=Taa ths'y—heys'y,
T3 =Tapz —hsyc'y, T2 =Taza —hses'y,

TC436 =Taze —h ¢’y dx, T446 = Taas —h s’y dx,

T%s12 =Ts512 T h Rs; .
The 3-rd order:
Utz = Uz + T b, Uiz
U126 = U126 + Ti26 b s U134
U144 =Up144 T2 T4 b,
U"zm =Uyn +cEc' B2 —(Tin s +Tan )k,

12 =Uay +((Cx— C?)"PZ—TI h)S’x'l‘((?L‘ - l)thz
= Th1k) 8~ illlcx 2126x~ ¥212
Uyi16 =Uaiis +(ckd c+2cxcf dx)hz (T dx+

=Un22+2Ti22h,
=Unzs +Tiaa b,

+ 13, dy +T116Cx+T2166J5h
U 22 = Uy +((2C 7)}12Sx h)S +C h2 2
2k sx— (122 ¢’ T 222 Cx™ 222 h

U126 =Upi2s + ((2ex —1) A2 dy =Ty B) 85 + (((2ex —
~ D d' +2 3 d) B — To16h) Sx = (Tiazd'x + Tgdy +

+Ti6¢'x+Ta6) 1t

Uy133 =Un33 —(Tiz3 c'x —Taaac) h,

U134 = Upi3s — (T34 ¢'x + Taza ox — T2ag) b,

U144 =Uz1aa — (T14a ¢'x + Taaa cx —2 Toga) b,

U66 = Unigs +(cxdyd'x ey di) B2 —(Tisd'y +

+ 216 dy +Tig6 ¢’y +T266 Cx Z

Uyr26 = Uzzag, + (2 dx K2 s, =Ty ’1) S'y—d' htst—
—Tynshsy—(Tinz d + Typ2 dy)

U233 = U223z — (T133 s x +T233 Cx) h,

U234 =Un3s —(T1348'x + Tazg c) s
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U2244 = U244 ~ (T1445'x + T244 Cx) h,

e 66_U2266+(d h —‘Tlﬁﬁh) (2(1 d ht —

—Toesh ) sx —(Tizs d'x + Ta26 dx)?l

Ucaz6 = Uzazs — (T133 d xtTasd)h,

U23a6 = Uzzas — (Ti3ad'x + Tazs di)

U24a6 = Unase — (T1aa d'x ¥ Toas dx) 11,

Us2666 = Uzses +d2d'x B2 — (Tig6 d'x +Ta66 dx) 11,

USa114 = Usi14 +T314 8, U3123 =U3z123 + T3

U312 =U3124 2 T304 b, US3146 = U146 + T3a6 1,

Ulqiiz =Ugpiz +eic'y B2 — (T 2 +Tyz et b,

Uqi14 = UgniaH{(c2—c )P —T11A)S y HTura— Taraco)ht

Uqa3 = Ugiz+ (2 cx— 1) €' yh2 = T3 h) 8,— ( Thiac'yt

+ 143 ¢cx —Ty23

U124 = Ugrag +((2¢,
424 cx —2Tq24

Usq136 = Ugras+ 2exc’yd b —~(Tqrad +Tinec y HTazec )

Uyra6 = Ustast ((Qex— 1) d®— Ty h) 8'y— ( Tarady +
446 Cx — T446

Utyzas = Ugazz +¢'y st 2 — (T2 €'y + Taza sy 1,

Uizza = Ugnas + (s B2 —Tima ) 8y —Taza b sy

Uly236 = Udgas+(20" yd A2 —Tuzeh)Sx—(Tazad s+ Tio6c W1

Uli246 = Uszas H(25:dch?~T1260)8' y—(Tasesc+Ta2ed A

U433z =Uqzaz —Tizzc'y b,

Uy334 =Us3zs —(T1335'y —Tiaa c'y) A,

Uts3s6 = Uszes +¢'ydz h* —(Tis6 ¢’y + Tazs de) 1,

U444 =Ussas —T1as s’y b,

Usa66 = Ussos +(d3h2 —Tis6 8 ) sy —Taas dx b,

USsiiz =Usiia +Ts12 2, U122 = Us122 2 Tspp b

Uts126 = Us126 + Tsa6 b, Us134 = Us134 + Tsaa A

Usiqa =Usiaq T2 Tsqs b .

We notice that such algorithm might be applied to the re-
search of any multipoles of the higher order.

6. The Realisation of the Method

The model described above wasused as abasisof it’s program
realisation on IBM PC/AT. The main problem, as we stated
before, was that the decomposition of the motion equation
and field components was held within the arbitrary trajectory
(in the curvelinear coordinates XYS), though the results had
to be represented in a Cartesian coordinates XYZ. The
correction of the 2-d and 3-rd order abberation coeffs
eliminates only part of the problem. The transformation 1o
the Cartesian coordinate system involves the difinition of the
equation of the arbitrary trajectory, thus the solution Eq.
(1.2) was found, with the substitution of the linear part of the
decomposition i?(z) (1.4). Such substitution is prooved with
the fact, that the generated relative trajectories of the beams
with the momenta of more than / GeV/c are of a low
difference with the geometrical axis of a magnet.

—=2)sxh? = T112h)8'y — (Tarasx +
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