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A thorough analisys of the charged particles dynamics on the 
basis of the matrix formalism up to the 3-rd order incluisve 
for the sector dipole magnets is usually held in a curvelinear 
coordinate system. In thase cases, whenever the dipole is not 
a sectoral one, transformation to the curvelinear coordinates, 
associated with the trajecto of the central particle of the 
beam, doesn’t proove itself, ?La use of the difficulty of the 
physical interpretation of the obtained results.That make.? 
necessary to analyse the dynamics of the beam in the bending 
magnet in the cartesian (rectangular) mordinate system. 

1. Motion Equation in the Rectangular (Cartesian) 
Coordinates. Linear Approximation 
It is well known that the motion of the charged particle with 
t 
I& 

e charge Q and mass m in a magnetic field with the induction 
IS determined by the Lorentz force: 

differential equation of the plane trajectory ~(2) 

x (1.2) 

where l/~~=q~/(ypc) - the curvature of the trajectory, 
p = mv- the particle momentum. The analytic solution of Eq. 
(1.2) with the initial conditions of x(0) = q, x’(0) = .a!~ , 
is well known[” 

I 

xfz)=d&-( z - c,y-+ c2 * x’(z) =.*v(1*3) 

c,=xb** ?cz=hl** 

*he determinationof the higher order optics for theEq. (1.1) 
in Cartesian coordinates is more complicated. It is easier to 
determine the higher than the first orderoptics in curvelinear 
coordinate system with furter transformation back to XYZ. 
Such transformation is adequally described by changing of 
the 2-d and 3-rd order abberation coeffs only. 

~‘0, yo, ~‘0, 1, a) be the initial conditions 
would perform in the form of the 

decomposition on the initial parameters 9, (i = 1, 2) 

(1.4) 

The index “c” ‘shows -that the coeffs were obtai?ed in 
rectangular (C 
functions Ri(& @?%I~~??~~~%%~%?u%??I~ 
general type (TRANSPORT-type). We define the 
decomposition coeffs (1.4) following the formalism lzl, 
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2. The 3-rd Order Beam Optics of a Dipole Magnet 
The solution of the Eq. (1.1) in the curvelinear coordinates 
(especially in its linear approximation) is well known. That’s 
why we would review general parts briefly. 
The right-oriented cur@near coordinate system XYS is 
chosen so, that the ort s should be aimed on a tangent to 
some, chosen before, respondent to the predifined specific 
initial conditions, of the urbitzary (relative) trajectory. 
Because of the well known symmetry relation of the scalar 
magnet potential, in relation to the mid-plane, a particle, that 
starts in that plane won’t leave it. 

(o(x,y,s)=-ye -Y,S) (2.1) 
We would decompose Eq. (1.1). To obtain the abberation 
coeffs of the decomposition (1.4)) it is necessary to carry out 
the following procedures: 
1. Decompose B(x, ?J, S) close to the arbitrary trajectory, 

taking into accoun the symmetry relation (2.1). 
2. Decompose Eq. (1.1) up to the necessary order. 
3.egzo;ut the substltutlon of (1.3) into the obtained 

4. Generpttd ti.e ifferencial equations, by equating the coeffs 
of the Identxa members. 4 

linear independent solutions of the obtained 
reen function, after what Integrate it order 

the right parts of the mentioned above 

2.1 Decomposition of the B(x,y,s) Field. 
To decompose the B(x, y, S) we would use the Maxwell 
equation and the symmetry relation. 
We rewrite the scalar potential in the fo”, correspondent 
with Eq. (2.1). Toobtain the recurrent equations between.the 
co&s in p- decomposition we would use the Iaplas equation. 
Further by identifying the decomposition coeffs with a well 
known decomposition of the central field B&, 0, s), we 
wuold perform those coeffs in terms of the valueless coeffs of 
the so called “multiplicative force” kl (s), kz(s) a!+(s) 

3-rd order are the following: 
B&y,s)=&q [-h2kly+2h3k2xy+3h3x2y+ 
+ (-h’k3 - h4k2/3 + 2hh’k’,/3 + h2k”,/6 + h12k1/3+ 
+hh”kI/3-h4k1/6+h’2/6+hh”/3)$+...], 
B,.(qy,s)=@q[h-h2klx+h3k2*2+h4kj$+ 
+( -#k2+h3k,/2 - h”/2) y? + (- 3h’ kg-h4 k2 + 

+%h’&, +h2k”,/2+hf2k, +hh”&, -h4kl/2+h’2/2+ 
+M”)g+.. I, 
B&T, y, s) =pbc/q [h’ y + (- # kf- 2 h h’ k, - MI’) xy + 
+ (- # k’2/3- h2 h’ k,+ h3 k’,/6+ h2 h’ k/2) 3 + 
+(ti k’2+3h2h’k2+h3k’,+2h2h’kI+h2h’~y+...]. (2.1.2) 
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2.2 Decomposition of the Motion Equation. 

The result form of the motion equation in the X- and Y-plane 
is the following 
X”-(l-k,)II%=hS-(1 -2kl+k2)h3X2+h’xd+ 

+(2-k~)hw+hX’v2+(h”-h3(k,-k2))yZ+ 
+h’y),-h4/2/2-hd2+(kl-2k2-k3)h4x3- 
- hh’lx’ + (1 - 2kl + k2) hT& - (2 - 2 kl/3) h%x’2- 
-(hQ/2+k1 (h4/2+hh”+K2)+2M’Kl +h2k”l- 
-3hl(kz+k3))xyZ-(hk’t+2h’kt)hXyy’+ 
+~klxy’2/2-(2-~,)h2~~2+33~‘26- 
- NklX’y$ - ( H’ - N k] + 2 h3 k2) y2 8/2 - h’yjd + 
+ h 4/Z d/2 + h @), (2.2.1) 
y” +@k, y=2(k2-kl)h3xy+h’xy’-h) zdy+h?f+ 
+ h2k, y 6 - (k, - 4k2- 3k3)h4x2y -h h’gy’ + ( 2 h’ kl + 
+hk’,)hxx’y-(2-k,)h2xx’y+2(k, -k2)h3xd-- 
-h?k,x’2y/2+h’x’yd+hd,$b+(hh”/3+h’2- 
- ( ti/6 - h h/‘/3 - h’/3) kl ++ 2hh’k’( +h2k”1/6 - 
-tik3)$--3h2k , ~~‘~12 -h2 kl yd2 +.... (2.2.2) 

2.3 The Differential Equations of the Matrix Elements. 
The further algorithm of saluting the Eqs. (2.2.1)-(2.2.2) is 
evident. To determine the linear independent solutions we 
examine the linear parts of those equations: 

1 

x”-(l-k,)h2x=h6, 

y” +k, h2y=0. 
(2.3.1) 

Each of the mentioned above equations has at least two linear 
independent solutions. The general solutionof the equations, 
as it is well known, is the linear combination of the linear 
independent solutions with the arbitrary coeffs. Besides all 
the equation for the determination of the x 

I part has also a private solution, that is one o 
S) with the right 
the components 

of the general one. Let’s define the most general form of the 
mentioned solutions in the bending plane as: 
1. Sine-likefunction s,(i) : S,(O) ~0, S’,(O) = 1, d =O . 
2. Cosine-bkefunction c*(s) : cx(0)= 1, c'~(O)= 1, d = 0 . 
3Bispersion function d,(S) : d,(O) = 0, d,(O) = 0,d = 1 . 
4. Sine-likefunction sy(s) : ~~(0) = 0, ~‘~(0) = 1, 6 = 0 . 
5. Cosine-likefunction cY(s) : C,,(O)= I, c,,(O)= 1, d = 0 . 
Those functions define the so-called characteristic rays of the 
arbitary magnetic system and all of it’s abberation coeffs. 
The common solutions of the Eq. (2.3.1) with the initial 
conditions (ch. 1) is the following: 

L 

m=m’% +sx(4’~0 +4(w~ (2 3 2) 
m = q4 ‘W + sy(s) Yo * * * 

That comm n form of the generated solutions makes evident 
that the Green function -G(s, 6) = 4s) ~(6) -c(S) s(t)), and 
the private solution of the nongomogenius equation 
q” + k2 q =f: should be generated by means of the integral 

4=.!~G(s,wo)&. (2.3.3) 

2.4 Differential Equations of the Abberation Coeffs. 
The abberation coeffs of the matrices Rii(s>, qj/(S), I!&(S) 
are the solutions of the nonhomogenius garmonic oscillation 
differential equations of the Eq. (2.3.3) form with the null 
initial conditions. We would state that the right parts of the 
equalions for obtaining the elements Tijk - are the square 

forms of the 1-st order coeffs. The driving forces of the 3-rd 
order COeffS uijk/fE) h ave a more complicated form. We notice 
that the “angle” elements of the matrix (+2,4) are calculated 
by differentiating on s of the “coordinate” elements (i=1,3). 

3. Linear Approximation 
#a_gnetic field of the “pure” dipole 

-B (0, &, 0) , h(s) = l/pa = canst, kl = k2 = k3 = 0. . 
S, =po sin s/pa , c, = cos s/pa , 

b 
sy=y,cy=l. (3.1) 

Green functions 

t 

projections (S 2 E) 
G(s, E) =PO sin@ - W&J , 
G,@,t) =s-t. 

(3.2) 

Dispersional func ion dX (s) =po ( 1 - c,(s)). 
The non-zero matrix elements Rii 

R11 =c,, R12 =sxt RIG =/%J (I -cx), RZI = -s,/& 
R22 = 6, Rzi ‘s,/~,R~~=~,R~~=s,R~~=~, 
Rsl = s&,,, R52 =po (1 - cx) , R5, = 1 , Rs6 = s - sx, 
R 66=1. 

4. Nonlinear Abberation Coeffs 
The non-zero coeffs of the 2-d order: 

~::I,~~~c~~~~,~~~Sii~~~;T116=S!. 

Tl44 = -pO (1 - cx), TM = - s:/2po , T314 = s s,/po, 
T324 =&T (1 - Cx), T346 = S - Sx. 
The 3-rd order: 
lJl,,, = c$ h4/8 - cx h4/8 + c; h2/8 - c; h2/4 + c, h2/8, 
U1112=c$h4s,/8 +c$h2sx/8 -c;L.h2s,/8, 
U,,,6=h3sxs/2-hsxs/2-llc,h5s~/8-h5s$’2+ 
+<s$/2+cxh3s$+5c,h5s;/8-c;h3s$‘2+ 
+ ti s; + c: h s:/2 + </h/4 + c‘j h/2 - c; h/2 - c, h/4, 

lJI , 22 = -- h’s&4 - 3 c: h2s,/8 - 3 c$ s,/8 - 2 s,/8 - 
- c, sx + 3 s,/2 - c; h2/8 + c, h2/8 - 198 + &3 + 
+< -11 c,/8, 

lJ1126=-cxhs/2+cxs/2h+c~h3sx/4+c’:hs,/4- 
- c4, s,/4h - c; s,/4h, 
IJ1 ,44 =-h2sp2/4 + h2sxs/2 + c,s/4 - s,/4 + &2 - l/2, 
LJ1 1 66 = - h2sxs/2 +s, s/2 + cxh4 sj + h4s$ - cx h’s; - 
- c, h4 sf/2 + + c: h2 &/2 + cx h2 s?j/2 - 2 h2 s; - 
- c7, &2 - c$ + c;, 
lJI 222 = c, s/4 + c$h2sx/4 + c$ s,/4 - s,/2 - 3&‘8h2 + 
+ 5 &4h2 - d/h2 + c,/8h2 - 3 c;/8 + 3 c,/8, 
U1226 = h sx s/4 + 3 c; h s/8 + 3 ci s,/8h + c: s,/8h - 
- c, s/h + s,/2h + c: h/8 - c, h/8 + &‘Xh - &2h - 
- &2h + 7 c,/8h, 
u124,, = S, S2/4 - C, s/4h2 _ C,S/2 + s,/4h2 + C&/2 + 

+ c/h2 - l/h2, 
UI 446 = c,/2h - &2h, U, 666 = ( 1 - c$‘2h, 
U3114=-h2s2/4+cxh2s,s/4+h2s,s+h2s/4- 
- c, h2 s,/4 - h2 sx, 
U~124=h2s3/12fs2/4-~xsxs/4-2sxs-~~s/4+ 
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+5~/4+s,+c2,/2+2cx-S/2, 
U, 46=hs2/4-c,hs,s/4-3hs/4+s/2h+ 
+ 1 c, h sx/4 - c, s,/2h , 
u3224 = - s3/12 + 2 s/4h2 - s/4h2 - s/2 + cx s,/2 + 
+ &2h2 - 2 cx/h2 + 3/2h2, 
u3246 = -h s2/4 - s2/4h + c, sx s/4h + s/h - s,/h - 
- &4h - c/h + S/4h, U3444 = - s,/2 - s/2. 
Nine elements Tsj~andnineteenelements Usjklarenot listed. 

5. The Cartesian Coordinates 
To gain the ph sically trustworth results it is necessary to 
transform the i ata to the rectangu ar (Cartesian) coordinate T 
system XYZ. We would agree on the following designations: 

It won’t be difficult to obtain the Cartesian elements Tijk and 
I/ijklof the matrix, having marked them with the”?. Here we 
discuss only those elements that differ from one system to 
another. 

7’512=Tl12+h~x, 3.11 =T211 -hc,c’,, 
Fz12 = Tz12 + h s’x - h ( cx srx - clX sX) , 

p216 = T216 - h ( Cx d’, + C’x 4) , p222 = T222 +,s’,, 

p226 = T226 - h ( sx d’, + S’x 4) , 
~266=T266--h&d’x,~314=T314+hsy, 

F413 = T413 -h c, cry , F414 = T414 + h sly -h cX sfY , 

p423 = T423 - h Sx C’y , pa24 = T424 -h sx sly , 
p.,36 = T436 - h Cfy d, , ps,46 = T&$6 - h s’y dx, 

ps12 =Ts12 +hRsz. 
The 3-rd order: 

UC1112 =U1112 +7’112h 3 V1122 =U1122+2 T122hv 

UC1126 = ul,,, + Tl26 h t @I134 = u1134 + 7.134 h 9 

UC1144 =u1144 +2 T144 h > 

UC2111 =U2111 +c2,c’,h2 -(TIM c’,+T211 cx>h, 

UC2126 = u2126 + ((2% - 1) h2 dX - ~~ 16 hj s’~ + (((2cx - 
- T2,6h) S, - ( TI12d’x + T216dx + 

UC2133 = u2133 - ( T133 c’+ - T233 cx) h 9 

flu34 = u2134 - ( T134 C’x + T234 cx - T234) h v 

UC2144 = u2144 - ( 7’144 c’x + i-244 cx - 2 T244) h > 

UC 66 = Li21,j6 + ( cx d, d’, + c d;) h2 - ( 7.116 d’, + 
+ y216 4 + T166 C’x + T266 6) f~ 7 
UC2226 = U2226 + ( 2 d h2 S - T 
- i-226 h S, - ( T,22 d< + T;22 dlbh) ‘lx - d’x h2 ” - 

UC2233 = u2233 - ( T133 s’x + T23t cx; h I 

UC2234 = u2234 - ( Tl34 s’x + T234 ‘%> h 7 

@2244 = u2244 - ( T144 s’x + T244 %> h I 

ryl16 7 yzfx”” ;$$ $x--%;f’&~ ( 2 d’x d’x h2 - 

UC2336 = u2336 - ( T133 d’x + T244 4) h > 

UC2346 = u2346 - ( T134 d’x + T234 4) h Y 

UC2446 = u2446 - ( T144 d’, + T244 4) h 9 

@2666 = u2666 + d: d’, h2 - ( T166 d’x + T266 4) h 9 

LIE3114 = u3114 +T314 h . UC3123 = u3123 + T323 h Y 

~3124 = u3124 +2 T324 h 1 v3146 = u3l46 + T346 h P 

UC4113=U4113+c~~‘~h~-(T111 c,2+T413cx)k 

UC4114 = U4114+((c~-c*)hZ-T111h)~‘~+(T414- Twx)h 1 

UC 23 = U4123f ((2 
+ y423 cx - T423) h 9 

=I- 1) C’yh’- T413 h) Sx- ( T112c’~+ 

yp24 = u4l24 + ((2Cx -2)s,h2 - T112h)S’~ - ( T414Sx f 
424 Cx - 2 T424) h 1 

@4136 = u4136+ 2c~‘yd~2-(T4,3d*+T,,6c’y+T436cxY1 9 

p 46= u4146+ ((%- 1) hh2- T116 h) S’y- ( T4l.A + 
+ 91’446 Cx - T446) h t 

fl4223 = US223 + Cry s! h2 - ( TI 12 C’y + T423 Sx> h 

’ u4224 = u4224 + ( sx h2 - T122 h) s’y - T424 h sx 1 

UC4236 = u4236+(2c’)*lxh2-T436h)Sx-(T423dx+T,26c’y)h, 

UC4246 = U4246+(2S,d~2--T,26h)S’y-(T446Sx+T424dx)h, 

UC4333 = U4333 - 7.133 c’y h , 

uC4334 = U4334 - ( T133 S’,J - T134 c’~) h , 
UC4366 = U4366 + C’y & h2 - ( Tl66 Cfy + T436 (t,) h , 

UC 4444 = u4444 - T144 s’y h 3 

UC4466 = u4466 +(d:h2-T166h)s’,,-T446dxh, 

(1’5112 =us112 +Ts12h 1 UC,122 = us122 +2 T522 h 9 

u5126 = US126 + T526 h , r/cs134 = u5134 + T534 h 9 

@5144 = Us144 +2 T544 h. 
We notice that such algorithm might be applied to the re- 
search of any multipoles of the higher order. 

6. The Realisation of the Method 
The model described above was used as a basis of it’s program 
realisation on IBM PC/AT. The main problem, as we stated 
before, was that the decomposition of the motion equation 
and field components was held within the arbitrary trajectory 
(in the curvelinear coordinates XYS) , though the results had 
to be represented in a Cartesian coordinates XYZ. The 
correction of the 2-d and 3-rd order abberation coeffs 
eliminates only part of the problem. The transformation to 
the Cartesian coordinate system involves the difinition of the 
equation of the arbitrary trajectory, thus the solution Eq. 
(1.2) was found with the substitution of the linear part of the 
decomposition Z(Z) (1.4). Such substitution is prooved with 
the fact, that the generated relative trajectories of the beams 
with the momenta of more than I GeV/c are of a low 
difference with the geometrical axis of a magnet. 
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