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Abstract 
Pert,urbation of the part,icle motion by a crab-cavity can 

excite the synchrobetatron resonances. We estimate the 
the tolerances of the residual dispersion function in the 
crab-cavity as well as of the chromatic distortion of the 
phase advance between cavities due to these resonances. 

I. INTRODUCTION 

An import,ant option of the B-factories with close by 
spacing bunches inside the beam is the use of a large cross- 
ing angle collision schemes [I .2]. In order to avoid the loss 
of the luminosity and synchrobetatron resonances, which 
are specific to the conventional crossing angle schemes 
[3], It was suggested [4] to use the so-called crab-crossing 
sche~ne. which initially was invented for linear colliders [5]. 
In this report we discuss the tolerances for the ring im- 
perfections, related to synchrohetatron resonances due to 
crabcavily. We assume the scheme, where bunches are 
tilted in t,he horizontal plane by RF-kickers, placed at 
p0int.s. with ‘~a/2 phase advances of t,he horizonta.1 he- 
tatron oscillations from the collision point. For numerical 
estimations we use the parameters reported in [2]. 

II. DISPERSION IN A CRAB-CAVITY 

T\I 1 IO-nlode with a t~ranswrse deflecting voltage 

(1) 

can give a necessary kick. Here, B is the particle energy, 
20 crossing angle. Q RF-frequency of the cavity, ,$z p- 
function at the IP and Pcrob &function at the crab-cavit,y. 
To produce t,he crossin g angle of 50 mrad. the deflecting 
voltages must be 0.82 RIV for LER and I.9 MV for HER. 
For the sake of simplicit,y we neglect. t,he effect, of t,he edge 
fields of the crab-cavity and assume that a vector potential 
of [II<, cloflecting TXIllO-mode IS 

Al = 0, All = -~~.;,(k,~)~(s)si,~(~) (2) 

Here, @ = Rt+hpo, yo is the phase of the synchronous par- 
ticle, h the RF-harmonic number, Jo the Bessel funct,ion 
of the 1st order. ,1 its first root (71 ‘Y 3.832), /cl = y,/b. 6 

’ On lenve of absence from Budker Institute of Nuclear Physics, 
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the radius of the cavity; r2 = x2 + 2’; 

h(s) = 6(s + L/2) + qs - L/2), (3) 

where L is the distance between cavities. We take that 
the oscillations of a particle near the closed orbit are de- 
scribed by the following equations (7 = wol is taken as an 
independent variable, 7” > 1) 

4~ 
t=Zb+77p, lb = a, COS &, 2 = aa cos Qz 

B=T+$o,- P=PaCOs?jJ, p’ = vspp, sin +a) 

I z,2 = P(U&,E _ PJZ,Z (4) 
2Ro 2 ’ 

d::,, = uz,z 1 

I = P&%+4 $8 
3 2cu =-y, y’:=-vs. 

The hamiltonian part of equations of motion of a perturbed 
particle is generated by the following Hamilt,onian 

H = VZ& + UZ~; - vsJ3 + libb - ~\~~~,s~sin(Q). 

IV = bt’~-JJ1(klr), 
0 WC = - (5) 

klr E ’ 

where Cuba describes the beam-beam interaction. Provided 
that the dispersion function in the cavities is zero, and the 
bet,atron phase advance between the tilting and restoring 
cavities is T, t,he Hamiltonian in Eq.(5) predicts only res- 
onances due to the beam-beam interaction. We assume 
that the working point of the ring is chosen outside the 
stopbands of the beam-beam instability. Then, the term 
(Jbb describes only the beam-beam tune shifts. For a bunch 
with a very flat, Gaussian distribution in transverse coordi- 
nataes the tune shift of the horizontal betatron oscillations 
is 

Avr = Sz 
1 - exp(-J,/2<,) 

Jzk 
, E=&. (6) 

1 h 
Assuming Y << 6 and using a Taylor expansion of the Bessel 
function, we wit.e 

61V = w-cv~x = -W’ljx 
c 

1.83; - 1.121; + 
> 

(7) 

The lowest synchrobetatron resonances due to the residual 
dispersion are made by bK’~A(s) sin(+), where 

Ap 34 + 2 
Sr;V~ = -1.83wrj~--b? 

P ” 

These resonances correspond to combinations 2v,+m, v, = 
n - Cl,fwo and 2~; + rnJ~* = n - s1/~0, where m, = 21, I 

294 

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993



arid n are integers. If we take Q/q = h, the averaging 
of the Hamiltonian (5) near, for instance, the resonance 
2v, = mlvI results in 

H = Ho +&F + h\q,n,J,nw(h~s)lJz cosx, 
Jzl2cr 

s 

dt 1 -e-i 
Hc,=v,J,-v,J,, F=2c, - 

t ’ (9) 
n 

A = 5.5 el/Us,kab 

ab2Eha ’ x = wz -matit. 10 20 30 40 50 
G/b, 

Due to J,,,(r) rr xm/(2”‘m!), when I < 1, this instabil- 
ity mainly affects the particles with large amplitudes of Figure 1: Hamiltonians H*; n = lOem, m1 = 2. 
synchrotron oscillations A, = ‘Xla,, a*,,, = 20a,. A = 0. 

Since H in Eq.(9) depends only on one phase vari- 
;able y, we can use an additional integral of motion C = 
(JS/rnz) - (J1,/2) to reduce the study of a Cdimensional 
problem described by Ii to the study of an equivalent 
two-dimensional problem, described by the Hamiltonian 
H’(,,‘,. x) = H[J,, m,(J,/2 + C), ~1. The charactkr of 
the trajectories in the phase-space (Jz,x) can be figured 
out inspecting the behaviour of the curves H*(Jr) = 
H’(J,,cosx = fl). The oscillat,ions are stable, if the 
horizontal line H’ = con.st starting, for instance, from the 
curve H+(J) crosses the curve H- (J): or crosses the curve 
II+(J) again Otherwise, the Hamiltouian H’(J,, x) de- 
scribes unstable oscillations(see. for instance, Ref.[G]). 

From Eq.(S), we obtain (A = r,,r - 7n,*v,/2) 

H* = A It illsl)l.J,,,,(h~pb)J + &F. 

wlrcre yslrL is initial amplit~ude of synchrotron oscillations 
and J,,, initial value of J,. As far as F E 2c, In(J,/c,), 
wt1e11 J, > E,, the Hamiltonians H’ describe unstable 
oscillations provided that 

I4 5 A,h = 111177)1,J,,,~(7~~,)1. (11) 

In the colliding beani mode t,he instability at small ampli- 
tudes is suppressed by a nonlineariby of bhc bean-beam 
kick. At large amplitudes of betatron oscillat.ions the 
beam-beam nonlinearity becomes too weak t.o suppress the 
instability. The balance between excitation and suppres- 
sion effects determines the dynamic aperture of the ring. 
As can be seen from Fig-l, on exact. resonance 2~~ = 2v, 
the instability limit,s dynamic aperture of tail particles at, 
a, ‘v 20+3Ou~. However since the value 4rh indeed is very 
small (Al,, = 10W4), this resonance is very narrow and can 
be easily avoided by a small variation of either vy: or v,. 

For I<EI< B-factory (Pcvab)r z 2(&r&); [2] and, there- 
fore the strengths of the vertical synchrobetatron reso- 
nances are 0 times smaller then the strengths of the cor- 
responding horizontal resonances. However, since this in- 
stability determines vertical dynamic aperture in terms of 
r,, due to small aspect ratio (02 < a,) the limitation of 
the vertical dynamic aperture due to this instability can 
be more severe. 

III. CHROMATIC DISTORTIONS 

Stronger perturbations can be caused by the dependence 
of the phase advance of the horizontal betatron oscillations 

on the particle momentum B(s. Ap) = /I(s)(I + CAP/P), 
where < = (a InP,/a InP). Assuming that IChp/pl < 1 and 
that C = const between the tilting and restoring cavities. 
t,he additional phase advance (A$ = ir+6$) becomes 6$ ? 
-rC(Ap/p). Then, a combinat,ion WA(s)sin(Q) excites 
the following set of resonances: u, + mSYL = n, 3v, + 
J,l,V, = 11, ., m, = 21. The lowest family (vr + m,v, = - 
12) is described by the perturbation (29 = G/c,) 

Due to 6H h a, this perturbation can open Hamiltoni- 
ans H* for resonant particles (A = v, + m,v, - n < 0) 
in the region J, y c, (see Fig.2). Fig.3 shows examples 
of t,he trajectories for such particles in the slow phase- 
space (z = Gcosx and p = -asinx). These 
0.5. 
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Figure 2: Hamiltonians H *; c = 1, na, = 2, .4, = 5a,, 
arzn = u,, A = -.6[, < = .05. 

curves were calculated taking into account the synchrotron 
radiation damping and neglecting the variation of ‘pI due 
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Figure 3: Phase trajectories corresponding to the Hamil 
toniam H* shown in Fig.2; X,,. = 10m4wo: pzn = 0; 1 
z-i,% = -2, 2. lin = 2. 

/ 
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Figure 4: Hamiltonians H*: C = 1, m, = 2, A, = 5a, 
a.rLri = 2oos,, A = 0, ( = .05. 

h 

Figure 5: Resonance curve for horizont.al oscillations; 
I? = ll;A[,/!l;, c = I, lllg = 2. 

to the variation of J,. At large amplitudes (Jz >> e2) and 
A = 0 Hamiltonian in Eq.(13) describes instable oscilla- 
tions (see Fig.4) which can limit the dynamic aperture of 
the ring. As seen from Fig.5, the width of unstable region 
is A < A:/(16&). For KEK B-factory [2] and C = 1 this 
gives A < 0.01. 

IV. CONCLUSION 

In this paper we showed that without special efforts the 
perturbations due to residual dispersion in a crab-cavity 
and chromatic distortions limit the dynamic aperture of 
the ring, if the working point approaches the lines of the 
synchrobetatron resonances. Since the value of the dy- 
namic aperture essentially depends on the nonlinearity of 
the beam-beam deflecting force, one can expect the de- 
crease of the dynamic aperture when E decreases (such a 
decay may occur due to, say, the loss of the bunch inten- 
sity). Since the strength of these resonances is proportional 
to J,,,# (hq,), they mainly disturbe the particles with large 
amplitudes of synchrotron oscillations (A, >> a,) 

The perturbation due to residual dispersion in crab- 
cavities causes rather nerrow resonances, which can be 
avoided by small variations of tunes. 

Chromatic distortions seems to be more dangerous due 
to the possibility of the excitation of the synchrotron 
satelites near integer resonance (vz + m,v,). Since these 
resonances are not suppressed by the synchrotron radia- 
tion damping, they must be avoided by the proper choice 
of the working point in the tune diagram. 

In both cases the strengths of resonances are propor- 
tional to the ratio ~,,‘a IX l/,/Z. This fact can cause an 
additional limitation on the use of the low-a lattices in the 
rings with crab-crossing. 
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